aboutsummaryrefslogtreecommitdiff
path: root/src/core.cpp
blob: ac180cc5098347866fa0e1742a5910ea80110d78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include "core.h"

#include "hash.h"
#include "tinyformat.h"
#include "utilstrencodings.h"

std::string COutPoint::ToString() const
{
    return strprintf("COutPoint(%s, %u)", hash.ToString().substr(0,10), n);
}

CTxIn::CTxIn(COutPoint prevoutIn, CScript scriptSigIn, uint32_t nSequenceIn)
{
    prevout = prevoutIn;
    scriptSig = scriptSigIn;
    nSequence = nSequenceIn;
}

CTxIn::CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn, uint32_t nSequenceIn)
{
    prevout = COutPoint(hashPrevTx, nOut);
    scriptSig = scriptSigIn;
    nSequence = nSequenceIn;
}

std::string CTxIn::ToString() const
{
    std::string str;
    str += "CTxIn(";
    str += prevout.ToString();
    if (prevout.IsNull())
        str += strprintf(", coinbase %s", HexStr(scriptSig));
    else
        str += strprintf(", scriptSig=%s", scriptSig.ToString().substr(0,24));
    if (nSequence != std::numeric_limits<unsigned int>::max())
        str += strprintf(", nSequence=%u", nSequence);
    str += ")";
    return str;
}

CTxOut::CTxOut(const CAmount& nValueIn, CScript scriptPubKeyIn)
{
    nValue = nValueIn;
    scriptPubKey = scriptPubKeyIn;
}

uint256 CTxOut::GetHash() const
{
    return SerializeHash(*this);
}

std::string CTxOut::ToString() const
{
    return strprintf("CTxOut(nValue=%d.%08d, scriptPubKey=%s)", nValue / COIN, nValue % COIN, scriptPubKey.ToString().substr(0,30));
}

CMutableTransaction::CMutableTransaction() : nVersion(CTransaction::CURRENT_VERSION), nLockTime(0) {}
CMutableTransaction::CMutableTransaction(const CTransaction& tx) : nVersion(tx.nVersion), vin(tx.vin), vout(tx.vout), nLockTime(tx.nLockTime) {}

uint256 CMutableTransaction::GetHash() const
{
    return SerializeHash(*this);
}

void CTransaction::UpdateHash() const
{
    *const_cast<uint256*>(&hash) = SerializeHash(*this);
}

CTransaction::CTransaction() : hash(0), nVersion(CTransaction::CURRENT_VERSION), vin(), vout(), nLockTime(0) { }

CTransaction::CTransaction(const CMutableTransaction &tx) : nVersion(tx.nVersion), vin(tx.vin), vout(tx.vout), nLockTime(tx.nLockTime) {
    UpdateHash();
}

CTransaction& CTransaction::operator=(const CTransaction &tx) {
    *const_cast<int*>(&nVersion) = tx.nVersion;
    *const_cast<std::vector<CTxIn>*>(&vin) = tx.vin;
    *const_cast<std::vector<CTxOut>*>(&vout) = tx.vout;
    *const_cast<unsigned int*>(&nLockTime) = tx.nLockTime;
    *const_cast<uint256*>(&hash) = tx.hash;
    return *this;
}

CAmount CTransaction::GetValueOut() const
{
    CAmount nValueOut = 0;
    for (std::vector<CTxOut>::const_iterator it(vout.begin()); it != vout.end(); ++it)
    {
        nValueOut += it->nValue;
        if (!MoneyRange(it->nValue) || !MoneyRange(nValueOut))
            throw std::runtime_error("CTransaction::GetValueOut() : value out of range");
    }
    return nValueOut;
}

double CTransaction::ComputePriority(double dPriorityInputs, unsigned int nTxSize) const
{
    nTxSize = CalculateModifiedSize(nTxSize);
    if (nTxSize == 0) return 0.0;

    return dPriorityInputs / nTxSize;
}

unsigned int CTransaction::CalculateModifiedSize(unsigned int nTxSize) const
{
    // In order to avoid disincentivizing cleaning up the UTXO set we don't count
    // the constant overhead for each txin and up to 110 bytes of scriptSig (which
    // is enough to cover a compressed pubkey p2sh redemption) for priority.
    // Providing any more cleanup incentive than making additional inputs free would
    // risk encouraging people to create junk outputs to redeem later.
    if (nTxSize == 0)
        nTxSize = ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION);
    for (std::vector<CTxIn>::const_iterator it(vin.begin()); it != vin.end(); ++it)
    {
        unsigned int offset = 41U + std::min(110U, (unsigned int)it->scriptSig.size());
        if (nTxSize > offset)
            nTxSize -= offset;
    }
    return nTxSize;
}

std::string CTransaction::ToString() const
{
    std::string str;
    str += strprintf("CTransaction(hash=%s, ver=%d, vin.size=%u, vout.size=%u, nLockTime=%u)\n",
        GetHash().ToString().substr(0,10),
        nVersion,
        vin.size(),
        vout.size(),
        nLockTime);
    for (unsigned int i = 0; i < vin.size(); i++)
        str += "    " + vin[i].ToString() + "\n";
    for (unsigned int i = 0; i < vout.size(); i++)
        str += "    " + vout[i].ToString() + "\n";
    return str;
}

// Amount compression:
// * If the amount is 0, output 0
// * first, divide the amount (in base units) by the largest power of 10 possible; call the exponent e (e is max 9)
// * if e<9, the last digit of the resulting number cannot be 0; store it as d, and drop it (divide by 10)
//   * call the result n
//   * output 1 + 10*(9*n + d - 1) + e
// * if e==9, we only know the resulting number is not zero, so output 1 + 10*(n - 1) + 9
// (this is decodable, as d is in [1-9] and e is in [0-9])

uint64_t CTxOutCompressor::CompressAmount(uint64_t n)
{
    if (n == 0)
        return 0;
    int e = 0;
    while (((n % 10) == 0) && e < 9) {
        n /= 10;
        e++;
    }
    if (e < 9) {
        int d = (n % 10);
        assert(d >= 1 && d <= 9);
        n /= 10;
        return 1 + (n*9 + d - 1)*10 + e;
    } else {
        return 1 + (n - 1)*10 + 9;
    }
}

uint64_t CTxOutCompressor::DecompressAmount(uint64_t x)
{
    // x = 0  OR  x = 1+10*(9*n + d - 1) + e  OR  x = 1+10*(n - 1) + 9
    if (x == 0)
        return 0;
    x--;
    // x = 10*(9*n + d - 1) + e
    int e = x % 10;
    x /= 10;
    uint64_t n = 0;
    if (e < 9) {
        // x = 9*n + d - 1
        int d = (x % 9) + 1;
        x /= 9;
        // x = n
        n = x*10 + d;
    } else {
        n = x+1;
    }
    while (e) {
        n *= 10;
        e--;
    }
    return n;
}

uint256 CBlockHeader::GetHash() const
{
    return Hash(BEGIN(nVersion), END(nNonce));
}

uint256 CBlock::BuildMerkleTree(bool* fMutated) const
{
    /* WARNING! If you're reading this because you're learning about crypto
       and/or designing a new system that will use merkle trees, keep in mind
       that the following merkle tree algorithm has a serious flaw related to
       duplicate txids, resulting in a vulnerability (CVE-2012-2459).

       The reason is that if the number of hashes in the list at a given time
       is odd, the last one is duplicated before computing the next level (which
       is unusual in Merkle trees). This results in certain sequences of
       transactions leading to the same merkle root. For example, these two
       trees:

                    A               A
                  /  \            /   \
                B     C         B       C
               / \    |        / \     / \
              D   E   F       D   E   F   F
             / \ / \ / \     / \ / \ / \ / \
             1 2 3 4 5 6     1 2 3 4 5 6 5 6

       for transaction lists [1,2,3,4,5,6] and [1,2,3,4,5,6,5,6] (where 5 and
       6 are repeated) result in the same root hash A (because the hash of both
       of (F) and (F,F) is C).

       The vulnerability results from being able to send a block with such a
       transaction list, with the same merkle root, and the same block hash as
       the original without duplication, resulting in failed validation. If the
       receiving node proceeds to mark that block as permanently invalid
       however, it will fail to accept further unmodified (and thus potentially
       valid) versions of the same block. We defend against this by detecting
       the case where we would hash two identical hashes at the end of the list
       together, and treating that identically to the block having an invalid
       merkle root. Assuming no double-SHA256 collisions, this will detect all
       known ways of changing the transactions without affecting the merkle
       root.
    */
    vMerkleTree.clear();
    vMerkleTree.reserve(vtx.size() * 2 + 16); // Safe upper bound for the number of total nodes.
    for (std::vector<CTransaction>::const_iterator it(vtx.begin()); it != vtx.end(); ++it)
        vMerkleTree.push_back(it->GetHash());
    int j = 0;
    bool mutated = false;
    for (int nSize = vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
    {
        for (int i = 0; i < nSize; i += 2)
        {
            int i2 = std::min(i+1, nSize-1);
            if (i2 == i + 1 && i2 + 1 == nSize && vMerkleTree[j+i] == vMerkleTree[j+i2]) {
                // Two identical hashes at the end of the list at a particular level.
                mutated = true;
            }
            vMerkleTree.push_back(Hash(BEGIN(vMerkleTree[j+i]),  END(vMerkleTree[j+i]),
                                       BEGIN(vMerkleTree[j+i2]), END(vMerkleTree[j+i2])));
        }
        j += nSize;
    }
    if (fMutated) {
        *fMutated = mutated;
    }
    return (vMerkleTree.empty() ? 0 : vMerkleTree.back());
}

std::vector<uint256> CBlock::GetMerkleBranch(int nIndex) const
{
    if (vMerkleTree.empty())
        BuildMerkleTree();
    std::vector<uint256> vMerkleBranch;
    int j = 0;
    for (int nSize = vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
    {
        int i = std::min(nIndex^1, nSize-1);
        vMerkleBranch.push_back(vMerkleTree[j+i]);
        nIndex >>= 1;
        j += nSize;
    }
    return vMerkleBranch;
}

uint256 CBlock::CheckMerkleBranch(uint256 hash, const std::vector<uint256>& vMerkleBranch, int nIndex)
{
    if (nIndex == -1)
        return 0;
    for (std::vector<uint256>::const_iterator it(vMerkleBranch.begin()); it != vMerkleBranch.end(); ++it)
    {
        if (nIndex & 1)
            hash = Hash(BEGIN(*it), END(*it), BEGIN(hash), END(hash));
        else
            hash = Hash(BEGIN(hash), END(hash), BEGIN(*it), END(*it));
        nIndex >>= 1;
    }
    return hash;
}

std::string CBlock::ToString() const
{
    std::stringstream s;
    s << strprintf("CBlock(hash=%s, ver=%d, hashPrevBlock=%s, hashMerkleRoot=%s, nTime=%u, nBits=%08x, nNonce=%u, vtx=%u)\n",
        GetHash().ToString(),
        nVersion,
        hashPrevBlock.ToString(),
        hashMerkleRoot.ToString(),
        nTime, nBits, nNonce,
        vtx.size());
    for (unsigned int i = 0; i < vtx.size(); i++)
    {
        s << "  " << vtx[i].ToString() << "\n";
    }
    s << "  vMerkleTree: ";
    for (unsigned int i = 0; i < vMerkleTree.size(); i++)
        s << " " << vMerkleTree[i].ToString();
    s << "\n";
    return s.str();
}