1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
// Copyright (c) 2012-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "coins.h"
#include "random.h"
#include <assert.h>
/**
* calculate number of bytes for the bitmask, and its number of non-zero bytes
* each bit in the bitmask represents the availability of one output, but the
* availabilities of the first two outputs are encoded separately
*/
void CCoins::CalcMaskSize(unsigned int &nBytes, unsigned int &nNonzeroBytes) const {
unsigned int nLastUsedByte = 0;
for (unsigned int b = 0; 2+b*8 < vout.size(); b++) {
bool fZero = true;
for (unsigned int i = 0; i < 8 && 2+b*8+i < vout.size(); i++) {
if (!vout[2+b*8+i].IsNull()) {
fZero = false;
continue;
}
}
if (!fZero) {
nLastUsedByte = b + 1;
nNonzeroBytes++;
}
}
nBytes += nLastUsedByte;
}
bool CCoins::Spend(const COutPoint &out, CTxInUndo &undo) {
if (out.n >= vout.size())
return false;
if (vout[out.n].IsNull())
return false;
undo = CTxInUndo(vout[out.n]);
vout[out.n].SetNull();
Cleanup();
if (vout.size() == 0) {
undo.nHeight = nHeight;
undo.fCoinBase = fCoinBase;
undo.nVersion = this->nVersion;
}
return true;
}
bool CCoins::Spend(int nPos) {
CTxInUndo undo;
COutPoint out(0, nPos);
return Spend(out, undo);
}
bool CCoinsView::GetCoins(const uint256 &txid, CCoins &coins) const { return false; }
bool CCoinsView::HaveCoins(const uint256 &txid) const { return false; }
uint256 CCoinsView::GetBestBlock() const { return uint256(0); }
bool CCoinsView::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) { return false; }
bool CCoinsView::GetStats(CCoinsStats &stats) const { return false; }
CCoinsViewBacked::CCoinsViewBacked(CCoinsView *viewIn) : base(viewIn) { }
bool CCoinsViewBacked::GetCoins(const uint256 &txid, CCoins &coins) const { return base->GetCoins(txid, coins); }
bool CCoinsViewBacked::HaveCoins(const uint256 &txid) const { return base->HaveCoins(txid); }
uint256 CCoinsViewBacked::GetBestBlock() const { return base->GetBestBlock(); }
void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; }
bool CCoinsViewBacked::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) { return base->BatchWrite(mapCoins, hashBlock); }
bool CCoinsViewBacked::GetStats(CCoinsStats &stats) const { return base->GetStats(stats); }
CCoinsKeyHasher::CCoinsKeyHasher() : salt(GetRandHash()) {}
CCoinsViewCache::CCoinsViewCache(CCoinsView *baseIn) : CCoinsViewBacked(baseIn), hasModifier(false), hashBlock(0) { }
CCoinsViewCache::~CCoinsViewCache()
{
assert(!hasModifier);
}
CCoinsMap::const_iterator CCoinsViewCache::FetchCoins(const uint256 &txid) const {
CCoinsMap::iterator it = cacheCoins.find(txid);
if (it != cacheCoins.end())
return it;
CCoins tmp;
if (!base->GetCoins(txid, tmp))
return cacheCoins.end();
CCoinsMap::iterator ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry())).first;
tmp.swap(ret->second.coins);
if (ret->second.coins.IsPruned()) {
// The parent only has an empty entry for this txid; we can consider our
// version as fresh.
ret->second.flags = CCoinsCacheEntry::FRESH;
}
return ret;
}
bool CCoinsViewCache::GetCoins(const uint256 &txid, CCoins &coins) const {
CCoinsMap::const_iterator it = FetchCoins(txid);
if (it != cacheCoins.end()) {
coins = it->second.coins;
return true;
}
return false;
}
CCoinsModifier CCoinsViewCache::ModifyCoins(const uint256 &txid) {
assert(!hasModifier);
std::pair<CCoinsMap::iterator, bool> ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry()));
if (ret.second) {
if (!base->GetCoins(txid, ret.first->second.coins)) {
// The parent view does not have this entry; mark it as fresh.
ret.first->second.coins.Clear();
ret.first->second.flags = CCoinsCacheEntry::FRESH;
} else if (ret.first->second.coins.IsPruned()) {
// The parent view only has a pruned entry for this; mark it as fresh.
ret.first->second.flags = CCoinsCacheEntry::FRESH;
}
}
// Assume that whenever ModifyCoins is called, the entry will be modified.
ret.first->second.flags |= CCoinsCacheEntry::DIRTY;
return CCoinsModifier(*this, ret.first);
}
const CCoins* CCoinsViewCache::AccessCoins(const uint256 &txid) const {
CCoinsMap::const_iterator it = FetchCoins(txid);
if (it == cacheCoins.end()) {
return NULL;
} else {
return &it->second.coins;
}
}
bool CCoinsViewCache::HaveCoins(const uint256 &txid) const {
CCoinsMap::const_iterator it = FetchCoins(txid);
// We're using vtx.empty() instead of IsPruned here for performance reasons,
// as we only care about the case where a transaction was replaced entirely
// in a reorganization (which wipes vout entirely, as opposed to spending
// which just cleans individual outputs).
return (it != cacheCoins.end() && !it->second.coins.vout.empty());
}
uint256 CCoinsViewCache::GetBestBlock() const {
if (hashBlock == uint256(0))
hashBlock = base->GetBestBlock();
return hashBlock;
}
void CCoinsViewCache::SetBestBlock(const uint256 &hashBlockIn) {
hashBlock = hashBlockIn;
}
bool CCoinsViewCache::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlockIn) {
assert(!hasModifier);
for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end();) {
if (it->second.flags & CCoinsCacheEntry::DIRTY) { // Ignore non-dirty entries (optimization).
CCoinsMap::iterator itUs = cacheCoins.find(it->first);
if (itUs == cacheCoins.end()) {
if (!it->second.coins.IsPruned()) {
// The parent cache does not have an entry, while the child
// cache does have (a non-pruned) one. Move the data up, and
// mark it as fresh (if the grandparent did have it, we
// would have pulled it in at first GetCoins).
assert(it->second.flags & CCoinsCacheEntry::FRESH);
CCoinsCacheEntry& entry = cacheCoins[it->first];
entry.coins.swap(it->second.coins);
entry.flags = CCoinsCacheEntry::DIRTY | CCoinsCacheEntry::FRESH;
}
} else {
if ((itUs->second.flags & CCoinsCacheEntry::FRESH) && it->second.coins.IsPruned()) {
// The grandparent does not have an entry, and the child is
// modified and being pruned. This means we can just delete
// it from the parent.
cacheCoins.erase(itUs);
} else {
// A normal modification.
itUs->second.coins.swap(it->second.coins);
itUs->second.flags |= CCoinsCacheEntry::DIRTY;
}
}
}
CCoinsMap::iterator itOld = it++;
mapCoins.erase(itOld);
}
hashBlock = hashBlockIn;
return true;
}
bool CCoinsViewCache::Flush() {
bool fOk = base->BatchWrite(cacheCoins, hashBlock);
cacheCoins.clear();
return fOk;
}
unsigned int CCoinsViewCache::GetCacheSize() const {
return cacheCoins.size();
}
const CTxOut &CCoinsViewCache::GetOutputFor(const CTxIn& input) const
{
const CCoins* coins = AccessCoins(input.prevout.hash);
assert(coins && coins->IsAvailable(input.prevout.n));
return coins->vout[input.prevout.n];
}
CAmount CCoinsViewCache::GetValueIn(const CTransaction& tx) const
{
if (tx.IsCoinBase())
return 0;
CAmount nResult = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
nResult += GetOutputFor(tx.vin[i]).nValue;
return nResult;
}
bool CCoinsViewCache::HaveInputs(const CTransaction& tx) const
{
if (!tx.IsCoinBase()) {
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins* coins = AccessCoins(prevout.hash);
if (!coins || !coins->IsAvailable(prevout.n)) {
return false;
}
}
}
return true;
}
double CCoinsViewCache::GetPriority(const CTransaction &tx, int nHeight) const
{
if (tx.IsCoinBase())
return 0.0;
double dResult = 0.0;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
const CCoins* coins = AccessCoins(txin.prevout.hash);
assert(coins);
if (!coins->IsAvailable(txin.prevout.n)) continue;
if (coins->nHeight < nHeight) {
dResult += coins->vout[txin.prevout.n].nValue * (nHeight-coins->nHeight);
}
}
return tx.ComputePriority(dResult);
}
CCoinsModifier::CCoinsModifier(CCoinsViewCache& cache_, CCoinsMap::iterator it_) : cache(cache_), it(it_) {
assert(!cache.hasModifier);
cache.hasModifier = true;
}
CCoinsModifier::~CCoinsModifier()
{
assert(cache.hasModifier);
cache.hasModifier = false;
it->second.coins.Cleanup();
if ((it->second.flags & CCoinsCacheEntry::FRESH) && it->second.coins.IsPruned()) {
cache.cacheCoins.erase(it);
}
}
|