1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "chain.h"
using namespace std;
/**
* CChain implementation
*/
void CChain::SetTip(CBlockIndex *pindex) {
if (pindex == NULL) {
vChain.clear();
return;
}
vChain.resize(pindex->nHeight + 1);
while (pindex && vChain[pindex->nHeight] != pindex) {
vChain[pindex->nHeight] = pindex;
pindex = pindex->pprev;
}
}
CBlockLocator CChain::GetLocator(const CBlockIndex *pindex) const {
int nStep = 1;
std::vector<uint256> vHave;
vHave.reserve(32);
if (!pindex)
pindex = Tip();
while (pindex) {
vHave.push_back(pindex->GetBlockHash());
// Stop when we have added the genesis block.
if (pindex->nHeight == 0)
break;
// Exponentially larger steps back, plus the genesis block.
int nHeight = std::max(pindex->nHeight - nStep, 0);
if (Contains(pindex)) {
// Use O(1) CChain index if possible.
pindex = (*this)[nHeight];
} else {
// Otherwise, use O(log n) skiplist.
pindex = pindex->GetAncestor(nHeight);
}
if (vHave.size() > 10)
nStep *= 2;
}
return CBlockLocator(vHave);
}
const CBlockIndex *CChain::FindFork(const CBlockIndex *pindex) const {
if (pindex == NULL) {
return NULL;
}
if (pindex->nHeight > Height())
pindex = pindex->GetAncestor(Height());
while (pindex && !Contains(pindex))
pindex = pindex->pprev;
return pindex;
}
CBlockIndex* CChain::FindEarliestAtLeast(int64_t nTime) const
{
std::vector<CBlockIndex*>::const_iterator lower = std::lower_bound(vChain.begin(), vChain.end(), nTime,
[](CBlockIndex* pBlock, const int64_t& time) -> bool { return pBlock->GetBlockTimeMax() < time; });
return (lower == vChain.end() ? NULL : *lower);
}
/** Turn the lowest '1' bit in the binary representation of a number into a '0'. */
int static inline InvertLowestOne(int n) { return n & (n - 1); }
/** Compute what height to jump back to with the CBlockIndex::pskip pointer. */
int static inline GetSkipHeight(int height) {
if (height < 2)
return 0;
// Determine which height to jump back to. Any number strictly lower than height is acceptable,
// but the following expression seems to perform well in simulations (max 110 steps to go back
// up to 2**18 blocks).
return (height & 1) ? InvertLowestOne(InvertLowestOne(height - 1)) + 1 : InvertLowestOne(height);
}
CBlockIndex* CBlockIndex::GetAncestor(int height)
{
if (height > nHeight || height < 0)
return NULL;
CBlockIndex* pindexWalk = this;
int heightWalk = nHeight;
while (heightWalk > height) {
int heightSkip = GetSkipHeight(heightWalk);
int heightSkipPrev = GetSkipHeight(heightWalk - 1);
if (pindexWalk->pskip != NULL &&
(heightSkip == height ||
(heightSkip > height && !(heightSkipPrev < heightSkip - 2 &&
heightSkipPrev >= height)))) {
// Only follow pskip if pprev->pskip isn't better than pskip->pprev.
pindexWalk = pindexWalk->pskip;
heightWalk = heightSkip;
} else {
assert(pindexWalk->pprev);
pindexWalk = pindexWalk->pprev;
heightWalk--;
}
}
return pindexWalk;
}
const CBlockIndex* CBlockIndex::GetAncestor(int height) const
{
return const_cast<CBlockIndex*>(this)->GetAncestor(height);
}
void CBlockIndex::BuildSkip()
{
if (pprev)
pskip = pprev->GetAncestor(GetSkipHeight(nHeight));
}
arith_uint256 GetBlockProof(const CBlockIndex& block)
{
arith_uint256 bnTarget;
bool fNegative;
bool fOverflow;
bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow);
if (fNegative || fOverflow || bnTarget == 0)
return 0;
// We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256
// as it's too large for a arith_uint256. However, as 2**256 is at least as large
// as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1,
// or ~bnTarget / (nTarget+1) + 1.
return (~bnTarget / (bnTarget + 1)) + 1;
}
int64_t GetBlockProofEquivalentTime(const CBlockIndex& to, const CBlockIndex& from, const CBlockIndex& tip, const Consensus::Params& params)
{
arith_uint256 r;
int sign = 1;
if (to.nChainWork > from.nChainWork) {
r = to.nChainWork - from.nChainWork;
} else {
r = from.nChainWork - to.nChainWork;
sign = -1;
}
r = r * arith_uint256(params.nPowTargetSpacing) / GetBlockProof(tip);
if (r.bits() > 63) {
return sign * std::numeric_limits<int64_t>::max();
}
return sign * r.GetLow64();
}
|