aboutsummaryrefslogtreecommitdiff
path: root/src/blockfilter.cpp
blob: 52d8f8c2965214ac04ed83fe79fc1a2fc253ffb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Copyright (c) 2018 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <blockfilter.h>
#include <hash.h>
#include <streams.h>

/// SerType used to serialize parameters in GCS filter encoding.
static constexpr int GCS_SER_TYPE = SER_NETWORK;

/// Protocol version used to serialize parameters in GCS filter encoding.
static constexpr int GCS_SER_VERSION = 0;

template <typename OStream>
static void GolombRiceEncode(BitStreamWriter<OStream>& bitwriter, uint8_t P, uint64_t x)
{
    // Write quotient as unary-encoded: q 1's followed by one 0.
    uint64_t q = x >> P;
    while (q > 0) {
        int nbits = q <= 64 ? static_cast<int>(q) : 64;
        bitwriter.Write(~0ULL, nbits);
        q -= nbits;
    }
    bitwriter.Write(0, 1);

    // Write the remainder in P bits. Since the remainder is just the bottom
    // P bits of x, there is no need to mask first.
    bitwriter.Write(x, P);
}

template <typename IStream>
static uint64_t GolombRiceDecode(BitStreamReader<IStream>& bitreader, uint8_t P)
{
    // Read unary-encoded quotient: q 1's followed by one 0.
    uint64_t q = 0;
    while (bitreader.Read(1) == 1) {
        ++q;
    }

    uint64_t r = bitreader.Read(P);

    return (q << P) + r;
}

// Map a value x that is uniformly distributed in the range [0, 2^64) to a
// value uniformly distributed in [0, n) by returning the upper 64 bits of
// x * n.
//
// See: https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
static uint64_t MapIntoRange(uint64_t x, uint64_t n)
{
    // To perform the calculation on 64-bit numbers without losing the
    // result to overflow, split the numbers into the most significant and
    // least significant 32 bits and perform multiplication piece-wise.
    //
    // See: https://stackoverflow.com/a/26855440
    uint64_t x_hi = x >> 32;
    uint64_t x_lo = x & 0xFFFFFFFF;
    uint64_t n_hi = n >> 32;
    uint64_t n_lo = n & 0xFFFFFFFF;

    uint64_t ac = x_hi * n_hi;
    uint64_t ad = x_hi * n_lo;
    uint64_t bc = x_lo * n_hi;
    uint64_t bd = x_lo * n_lo;

    uint64_t mid34 = (bd >> 32) + (bc & 0xFFFFFFFF) + (ad & 0xFFFFFFFF);
    uint64_t upper64 = ac + (bc >> 32) + (ad >> 32) + (mid34 >> 32);
    return upper64;
}

uint64_t GCSFilter::HashToRange(const Element& element) const
{
    uint64_t hash = CSipHasher(m_siphash_k0, m_siphash_k1)
        .Write(element.data(), element.size())
        .Finalize();
    return MapIntoRange(hash, m_F);
}

std::vector<uint64_t> GCSFilter::BuildHashedSet(const ElementSet& elements) const
{
    std::vector<uint64_t> hashed_elements;
    hashed_elements.reserve(elements.size());
    for (const Element& element : elements) {
        hashed_elements.push_back(HashToRange(element));
    }
    std::sort(hashed_elements.begin(), hashed_elements.end());
    return hashed_elements;
}

GCSFilter::GCSFilter(uint64_t siphash_k0, uint64_t siphash_k1, uint8_t P, uint32_t M)
    : m_siphash_k0(siphash_k0), m_siphash_k1(siphash_k1), m_P(P), m_M(M), m_N(0), m_F(0)
{}

GCSFilter::GCSFilter(uint64_t siphash_k0, uint64_t siphash_k1, uint8_t P, uint32_t M,
                     std::vector<unsigned char> encoded_filter)
    : GCSFilter(siphash_k0, siphash_k1, P, M)
{
    m_encoded = std::move(encoded_filter);

    VectorReader stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0);

    uint64_t N = ReadCompactSize(stream);
    m_N = static_cast<uint32_t>(N);
    if (m_N != N) {
        throw std::ios_base::failure("N must be <2^32");
    }
    m_F = static_cast<uint64_t>(m_N) * static_cast<uint64_t>(m_M);

    // Verify that the encoded filter contains exactly N elements. If it has too much or too little
    // data, a std::ios_base::failure exception will be raised.
    BitStreamReader<VectorReader> bitreader(stream);
    for (uint64_t i = 0; i < m_N; ++i) {
        GolombRiceDecode(bitreader, m_P);
    }
    if (!stream.empty()) {
        throw std::ios_base::failure("encoded_filter contains excess data");
    }
}

GCSFilter::GCSFilter(uint64_t siphash_k0, uint64_t siphash_k1, uint8_t P, uint32_t M,
                     const ElementSet& elements)
    : GCSFilter(siphash_k0, siphash_k1, P, M)
{
    size_t N = elements.size();
    m_N = static_cast<uint32_t>(N);
    if (m_N != N) {
        throw std::invalid_argument("N must be <2^32");
    }
    m_F = static_cast<uint64_t>(m_N) * static_cast<uint64_t>(m_M);

    CVectorWriter stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0);

    WriteCompactSize(stream, m_N);

    if (elements.empty()) {
        return;
    }

    BitStreamWriter<CVectorWriter> bitwriter(stream);

    uint64_t last_value = 0;
    for (uint64_t value : BuildHashedSet(elements)) {
        uint64_t delta = value - last_value;
        GolombRiceEncode(bitwriter, m_P, delta);
        last_value = value;
    }

    bitwriter.Flush();
}

bool GCSFilter::MatchInternal(const uint64_t* element_hashes, size_t size) const
{
    VectorReader stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0);

    // Seek forward by size of N
    uint64_t N = ReadCompactSize(stream);
    assert(N == m_N);

    BitStreamReader<VectorReader> bitreader(stream);

    uint64_t value = 0;
    size_t hashes_index = 0;
    for (uint32_t i = 0; i < m_N; ++i) {
        uint64_t delta = GolombRiceDecode(bitreader, m_P);
        value += delta;

        while (true) {
            if (hashes_index == size) {
                return false;
            } else if (element_hashes[hashes_index] == value) {
                return true;
            } else if (element_hashes[hashes_index] > value) {
                break;
            }

            hashes_index++;
        }
    }

    return false;
}

bool GCSFilter::Match(const Element& element) const
{
    uint64_t query = HashToRange(element);
    return MatchInternal(&query, 1);
}

bool GCSFilter::MatchAny(const ElementSet& elements) const
{
    const std::vector<uint64_t> queries = BuildHashedSet(elements);
    return MatchInternal(queries.data(), queries.size());
}