1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
|
// __ _ _______ __ _ _____ ______ _______ __ _ _______ _ _
// | \ | |_____| | \ | | | |_____] |______ | \ | | |_____|
// | \_| | | | \_| |_____| |_____] |______ | \_| |_____ | |
//
// Microbenchmark framework for C++11/14/17/20
// https://github.com/martinus/nanobench
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019-2021 Martin Ankerl <martin.ankerl@gmail.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef ANKERL_NANOBENCH_H_INCLUDED
#define ANKERL_NANOBENCH_H_INCLUDED
// see https://semver.org/
#define ANKERL_NANOBENCH_VERSION_MAJOR 4 // incompatible API changes
#define ANKERL_NANOBENCH_VERSION_MINOR 3 // backwards-compatible changes
#define ANKERL_NANOBENCH_VERSION_PATCH 6 // backwards-compatible bug fixes
///////////////////////////////////////////////////////////////////////////////////////////////////
// public facing api - as minimal as possible
///////////////////////////////////////////////////////////////////////////////////////////////////
#include <chrono> // high_resolution_clock
#include <cstring> // memcpy
#include <iosfwd> // for std::ostream* custom output target in Config
#include <string> // all names
#include <vector> // holds all results
#define ANKERL_NANOBENCH(x) ANKERL_NANOBENCH_PRIVATE_##x()
#define ANKERL_NANOBENCH_PRIVATE_CXX() __cplusplus
#define ANKERL_NANOBENCH_PRIVATE_CXX98() 199711L
#define ANKERL_NANOBENCH_PRIVATE_CXX11() 201103L
#define ANKERL_NANOBENCH_PRIVATE_CXX14() 201402L
#define ANKERL_NANOBENCH_PRIVATE_CXX17() 201703L
#if ANKERL_NANOBENCH(CXX) >= ANKERL_NANOBENCH(CXX17)
# define ANKERL_NANOBENCH_PRIVATE_NODISCARD() [[nodiscard]]
#else
# define ANKERL_NANOBENCH_PRIVATE_NODISCARD()
#endif
#if defined(__clang__)
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_PUSH() \
_Pragma("clang diagnostic push") _Pragma("clang diagnostic ignored \"-Wpadded\"")
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_POP() _Pragma("clang diagnostic pop")
#else
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_PUSH()
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_POP()
#endif
#if defined(__GNUC__)
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_PUSH() _Pragma("GCC diagnostic push") _Pragma("GCC diagnostic ignored \"-Weffc++\"")
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_POP() _Pragma("GCC diagnostic pop")
#else
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_PUSH()
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_POP()
#endif
#if defined(ANKERL_NANOBENCH_LOG_ENABLED)
# include <iostream>
# define ANKERL_NANOBENCH_LOG(x) \
do { \
std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << x << std::endl; \
} while (0)
#else
# define ANKERL_NANOBENCH_LOG(x) \
do { \
} while (0)
#endif
#define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 0
#if defined(__linux__) && !defined(ANKERL_NANOBENCH_DISABLE_PERF_COUNTERS)
# include <linux/version.h>
# if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)
// PERF_COUNT_HW_REF_CPU_CYCLES only available since kernel 3.3
// PERF_FLAG_FD_CLOEXEC since kernel 3.14
# undef ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS
# define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 1
# endif
#endif
#if defined(__clang__)
# define ANKERL_NANOBENCH_NO_SANITIZE(...) __attribute__((no_sanitize(__VA_ARGS__)))
#else
# define ANKERL_NANOBENCH_NO_SANITIZE(...)
#endif
#if defined(_MSC_VER)
# define ANKERL_NANOBENCH_PRIVATE_NOINLINE() __declspec(noinline)
#else
# define ANKERL_NANOBENCH_PRIVATE_NOINLINE() __attribute__((noinline))
#endif
// workaround missing "is_trivially_copyable" in g++ < 5.0
// See https://stackoverflow.com/a/31798726/48181
#if defined(__GNUC__) && __GNUC__ < 5
# define ANKERL_NANOBENCH_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__)
#else
# define ANKERL_NANOBENCH_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
#endif
// declarations ///////////////////////////////////////////////////////////////////////////////////
namespace ankerl {
namespace nanobench {
using Clock = std::conditional<std::chrono::high_resolution_clock::is_steady, std::chrono::high_resolution_clock,
std::chrono::steady_clock>::type;
class Bench;
struct Config;
class Result;
class Rng;
class BigO;
/**
* @brief Renders output from a mustache-like template and benchmark results.
*
* The templating facility here is heavily inspired by [mustache - logic-less templates](https://mustache.github.io/).
* It adds a few more features that are necessary to get all of the captured data out of nanobench. Please read the
* excellent [mustache manual](https://mustache.github.io/mustache.5.html) to see what this is all about.
*
* nanobench output has two nested layers, *result* and *measurement*. Here is a hierarchy of the allowed tags:
*
* * `{{#result}}` Marks the begin of the result layer. Whatever comes after this will be instantiated as often as
* a benchmark result is available. Within it, you can use these tags:
*
* * `{{title}}` See Bench::title().
*
* * `{{name}}` Benchmark name, usually directly provided with Bench::run(), but can also be set with Bench::name().
*
* * `{{unit}}` Unit, e.g. `byte`. Defaults to `op`, see Bench::title().
*
* * `{{batch}}` Batch size, see Bench::batch().
*
* * `{{complexityN}}` Value used for asymptotic complexity calculation. See Bench::complexityN().
*
* * `{{epochs}}` Number of epochs, see Bench::epochs().
*
* * `{{clockResolution}}` Accuracy of the clock, i.e. what's the smallest time possible to measure with the clock.
* For modern systems, this can be around 20 ns. This value is automatically determined by nanobench at the first
* benchmark that is run, and used as a static variable throughout the application's runtime.
*
* * `{{clockResolutionMultiple}}` Configuration multiplier for `clockResolution`. See Bench::clockResolutionMultiple().
* This is the target runtime for each measurement (epoch). That means the more accurate your clock is, the faster
* will be the benchmark. Basing the measurement's runtime on the clock resolution is the main reason why nanobench is so fast.
*
* * `{{maxEpochTime}}` Configuration for a maximum time each measurement (epoch) is allowed to take. Note that at least
* a single iteration will be performed, even when that takes longer than maxEpochTime. See Bench::maxEpochTime().
*
* * `{{minEpochTime}}` Minimum epoch time, usually not set. See Bench::minEpochTime().
*
* * `{{minEpochIterations}}` See Bench::minEpochIterations().
*
* * `{{epochIterations}}` See Bench::epochIterations().
*
* * `{{warmup}}` Number of iterations used before measuring starts. See Bench::warmup().
*
* * `{{relative}}` True or false, depending on the setting you have used. See Bench::relative().
*
* Apart from these tags, it is also possible to use some mathematical operations on the measurement data. The operations
* are of the form `{{command(name)}}`. Currently `name` can be one of `elapsed`, `iterations`. If performance counters
* are available (currently only on current Linux systems), you also have `pagefaults`, `cpucycles`,
* `contextswitches`, `instructions`, `branchinstructions`, and `branchmisses`. All the measuers (except `iterations`) are
* provided for a single iteration (so `elapsed` is the time a single iteration took). The following tags are available:
*
* * `{{median(<name>)}}` Calculate median of a measurement data set, e.g. `{{median(elapsed)}}`.
*
* * `{{average(<name>)}}` Average (mean) calculation.
*
* * `{{medianAbsolutePercentError(<name>)}}` Calculates MdAPE, the Median Absolute Percentage Error. The MdAPE is an excellent
* metric for the variation of measurements. It is more robust to outliers than the
* [Mean absolute percentage error (M-APE)](https://en.wikipedia.org/wiki/Mean_absolute_percentage_error).
* @f[
* \mathrm{MdAPE}(e) = \mathrm{med}\{| \frac{e_i - \mathrm{med}\{e\}}{e_i}| \}
* @f]
* E.g. for *elapsed*: First, @f$ \mathrm{med}\{e\} @f$ calculates the median by sorting and then taking the middle element
* of all *elapsed* measurements. This is used to calculate the absolute percentage
* error to this median for each measurement, as in @f$ | \frac{e_i - \mathrm{med}\{e\}}{e_i}| @f$. All these results
* are sorted, and the middle value is chosen as the median absolute percent error.
*
* This measurement is a bit hard to interpret, but it is very robust against outliers. E.g. a value of 5% means that half of the
* measurements deviate less than 5% from the median, and the other deviate more than 5% from the median.
*
* * `{{sum(<name>)}}` Sums of all the measurements. E.g. `{{sum(iterations)}}` will give you the total number of iterations
* measured in this benchmark.
*
* * `{{minimum(<name>)}}` Minimum of all measurements.
*
* * `{{maximum(<name>)}}` Maximum of all measurements.
*
* * `{{sumProduct(<first>, <second>)}}` Calculates the sum of the products of corresponding measures:
* @f[
* \mathrm{sumProduct}(a,b) = \sum_{i=1}^{n}a_i\cdot b_i
* @f]
* E.g. to calculate total runtime of the benchmark, you multiply iterations with elapsed time for each measurement, and
* sum these results up:
* `{{sumProduct(iterations, elapsed)}}`.
*
* * `{{#measurement}}` To access individual measurement results, open the begin tag for measurements.
*
* * `{{elapsed}}` Average elapsed wall clock time per iteration, in seconds.
*
* * `{{iterations}}` Number of iterations in the measurement. The number of iterations will fluctuate due
* to some applied randomness, to enhance accuracy.
*
* * `{{pagefaults}}` Average number of pagefaults per iteration.
*
* * `{{cpucycles}}` Average number of CPU cycles processed per iteration.
*
* * `{{contextswitches}}` Average number of context switches per iteration.
*
* * `{{instructions}}` Average number of retired instructions per iteration.
*
* * `{{branchinstructions}}` Average number of branches executed per iteration.
*
* * `{{branchmisses}}` Average number of branches that were missed per iteration.
*
* * `{{/measurement}}` Ends the measurement tag.
*
* * `{{/result}}` Marks the end of the result layer. This is the end marker for the template part that will be instantiated
* for each benchmark result.
*
*
* For the layer tags *result* and *measurement* you additionally can use these special markers:
*
* * ``{{#-first}}`` - Begin marker of a template that will be instantiated *only for the first* entry in the layer. Use is only
* allowed between the begin and end marker of the layer allowed. So between ``{{#result}}`` and ``{{/result}}``, or between
* ``{{#measurement}}`` and ``{{/measurement}}``. Finish the template with ``{{/-first}}``.
*
* * ``{{^-first}}`` - Begin marker of a template that will be instantiated *for each except the first* entry in the layer. This,
* this is basically the inversion of ``{{#-first}}``. Use is only allowed between the begin and end marker of the layer allowed.
* So between ``{{#result}}`` and ``{{/result}}``, or between ``{{#measurement}}`` and ``{{/measurement}}``.
*
* * ``{{/-first}}`` - End marker for either ``{{#-first}}`` or ``{{^-first}}``.
*
* * ``{{#-last}}`` - Begin marker of a template that will be instantiated *only for the last* entry in the layer. Use is only
* allowed between the begin and end marker of the layer allowed. So between ``{{#result}}`` and ``{{/result}}``, or between
* ``{{#measurement}}`` and ``{{/measurement}}``. Finish the template with ``{{/-last}}``.
*
* * ``{{^-last}}`` - Begin marker of a template that will be instantiated *for each except the last* entry in the layer. This,
* this is basically the inversion of ``{{#-last}}``. Use is only allowed between the begin and end marker of the layer allowed.
* So between ``{{#result}}`` and ``{{/result}}``, or between ``{{#measurement}}`` and ``{{/measurement}}``.
*
* * ``{{/-last}}`` - End marker for either ``{{#-last}}`` or ``{{^-last}}``.
*
@verbatim embed:rst
For an overview of all the possible data you can get out of nanobench, please see the tutorial at :ref:`tutorial-template-json`.
The templates that ship with nanobench are:
* :cpp:func:`templates::csv() <ankerl::nanobench::templates::csv()>`
* :cpp:func:`templates::json() <ankerl::nanobench::templates::json()>`
* :cpp:func:`templates::htmlBoxplot() <ankerl::nanobench::templates::htmlBoxplot()>`
* :cpp:func:`templates::pyperf() <ankerl::nanobench::templates::pyperf()>`
@endverbatim
*
* @param mustacheTemplate The template.
* @param bench Benchmark, containing all the results.
* @param out Output for the generated output.
*/
void render(char const* mustacheTemplate, Bench const& bench, std::ostream& out);
void render(std::string const& mustacheTemplate, Bench const& bench, std::ostream& out);
/**
* Same as render(char const* mustacheTemplate, Bench const& bench, std::ostream& out), but for when
* you only have results available.
*
* @param mustacheTemplate The template.
* @param results All the results to be used for rendering.
* @param out Output for the generated output.
*/
void render(char const* mustacheTemplate, std::vector<Result> const& results, std::ostream& out);
void render(std::string const& mustacheTemplate, std::vector<Result> const& results, std::ostream& out);
// Contains mustache-like templates
namespace templates {
/*!
@brief CSV data for the benchmark results.
Generates a comma-separated values dataset. First line is the header, each following line is a summary of each benchmark run.
@verbatim embed:rst
See the tutorial at :ref:`tutorial-template-csv` for an example.
@endverbatim
*/
char const* csv() noexcept;
/*!
@brief HTML output that uses plotly to generate an interactive boxplot chart. See the tutorial for an example output.
The output uses only the elapsed wall clock time, and displays each epoch as a single dot.
@verbatim embed:rst
See the tutorial at :ref:`tutorial-template-html` for an example.
@endverbatim
@see ankerl::nanobench::render()
*/
char const* htmlBoxplot() noexcept;
/*!
@brief Output in pyperf compatible JSON format, which can be used for more analyzations.
@verbatim embed:rst
See the tutorial at :ref:`tutorial-template-pyperf` for an example how to further analyze the output.
@endverbatim
*/
char const* pyperf() noexcept;
/*!
@brief Template to generate JSON data.
The generated JSON data contains *all* data that has been generated. All times are as double values, in seconds. The output can get
quite large.
@verbatim embed:rst
See the tutorial at :ref:`tutorial-template-json` for an example.
@endverbatim
*/
char const* json() noexcept;
} // namespace templates
namespace detail {
template <typename T>
struct PerfCountSet;
class IterationLogic;
class PerformanceCounters;
#if ANKERL_NANOBENCH(PERF_COUNTERS)
class LinuxPerformanceCounters;
#endif
} // namespace detail
} // namespace nanobench
} // namespace ankerl
// definitions ////////////////////////////////////////////////////////////////////////////////////
namespace ankerl {
namespace nanobench {
namespace detail {
template <typename T>
struct PerfCountSet {
T pageFaults{};
T cpuCycles{};
T contextSwitches{};
T instructions{};
T branchInstructions{};
T branchMisses{};
};
} // namespace detail
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
struct Config {
// actual benchmark config
std::string mBenchmarkTitle = "benchmark";
std::string mBenchmarkName = "noname";
std::string mUnit = "op";
double mBatch = 1.0;
double mComplexityN = -1.0;
size_t mNumEpochs = 11;
size_t mClockResolutionMultiple = static_cast<size_t>(1000);
std::chrono::nanoseconds mMaxEpochTime = std::chrono::milliseconds(100);
std::chrono::nanoseconds mMinEpochTime{};
uint64_t mMinEpochIterations{1};
uint64_t mEpochIterations{0}; // If not 0, run *exactly* these number of iterations per epoch.
uint64_t mWarmup = 0;
std::ostream* mOut = nullptr;
std::chrono::duration<double> mTimeUnit = std::chrono::nanoseconds{1};
std::string mTimeUnitName = "ns";
bool mShowPerformanceCounters = true;
bool mIsRelative = false;
Config();
~Config();
Config& operator=(Config const&);
Config& operator=(Config&&);
Config(Config const&);
Config(Config&&) noexcept;
};
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
// Result returned after a benchmark has finished. Can be used as a baseline for relative().
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
class Result {
public:
enum class Measure : size_t {
elapsed,
iterations,
pagefaults,
cpucycles,
contextswitches,
instructions,
branchinstructions,
branchmisses,
_size
};
explicit Result(Config const& benchmarkConfig);
~Result();
Result& operator=(Result const&);
Result& operator=(Result&&);
Result(Result const&);
Result(Result&&) noexcept;
// adds new measurement results
// all values are scaled by iters (except iters...)
void add(Clock::duration totalElapsed, uint64_t iters, detail::PerformanceCounters const& pc);
ANKERL_NANOBENCH(NODISCARD) Config const& config() const noexcept;
ANKERL_NANOBENCH(NODISCARD) double median(Measure m) const;
ANKERL_NANOBENCH(NODISCARD) double medianAbsolutePercentError(Measure m) const;
ANKERL_NANOBENCH(NODISCARD) double average(Measure m) const;
ANKERL_NANOBENCH(NODISCARD) double sum(Measure m) const noexcept;
ANKERL_NANOBENCH(NODISCARD) double sumProduct(Measure m1, Measure m2) const noexcept;
ANKERL_NANOBENCH(NODISCARD) double minimum(Measure m) const noexcept;
ANKERL_NANOBENCH(NODISCARD) double maximum(Measure m) const noexcept;
ANKERL_NANOBENCH(NODISCARD) bool has(Measure m) const noexcept;
ANKERL_NANOBENCH(NODISCARD) double get(size_t idx, Measure m) const;
ANKERL_NANOBENCH(NODISCARD) bool empty() const noexcept;
ANKERL_NANOBENCH(NODISCARD) size_t size() const noexcept;
// Finds string, if not found, returns _size.
static Measure fromString(std::string const& str);
private:
Config mConfig{};
std::vector<std::vector<double>> mNameToMeasurements{};
};
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
/**
* An extremely fast random generator. Currently, this implements *RomuDuoJr*, developed by Mark Overton. Source:
* http://www.romu-random.org/
*
* RomuDuoJr is extremely fast and provides reasonable good randomness. Not enough for large jobs, but definitely
* good enough for a benchmarking framework.
*
* * Estimated capacity: @f$ 2^{51} @f$ bytes
* * Register pressure: 4
* * State size: 128 bits
*
* This random generator is a drop-in replacement for the generators supplied by ``<random>``. It is not
* cryptographically secure. It's intended purpose is to be very fast so that benchmarks that make use
* of randomness are not distorted too much by the random generator.
*
* Rng also provides a few non-standard helpers, optimized for speed.
*/
class Rng final {
public:
/**
* @brief This RNG provides 64bit randomness.
*/
using result_type = uint64_t;
static constexpr uint64_t(min)();
static constexpr uint64_t(max)();
/**
* As a safety precausion, we don't allow copying. Copying a PRNG would mean you would have two random generators that produce the
* same sequence, which is generally not what one wants. Instead create a new rng with the default constructor Rng(), which is
* automatically seeded from `std::random_device`. If you really need a copy, use copy().
*/
Rng(Rng const&) = delete;
/**
* Same as Rng(Rng const&), we don't allow assignment. If you need a new Rng create one with the default constructor Rng().
*/
Rng& operator=(Rng const&) = delete;
// moving is ok
Rng(Rng&&) noexcept = default;
Rng& operator=(Rng&&) noexcept = default;
~Rng() noexcept = default;
/**
* @brief Creates a new Random generator with random seed.
*
* Instead of a default seed (as the random generators from the STD), this properly seeds the random generator from
* `std::random_device`. It guarantees correct seeding. Note that seeding can be relatively slow, depending on the source of
* randomness used. So it is best to create a Rng once and use it for all your randomness purposes.
*/
Rng();
/*!
Creates a new Rng that is seeded with a specific seed. Each Rng created from the same seed will produce the same randomness
sequence. This can be useful for deterministic behavior.
@verbatim embed:rst
.. note::
The random algorithm might change between nanobench releases. Whenever a faster and/or better random
generator becomes available, I will switch the implementation.
@endverbatim
As per the Romu paper, this seeds the Rng with splitMix64 algorithm and performs 10 initial rounds for further mixing up of the
internal state.
@param seed The 64bit seed. All values are allowed, even 0.
*/
explicit Rng(uint64_t seed) noexcept;
Rng(uint64_t x, uint64_t y) noexcept;
Rng(std::vector<uint64_t> const& data);
/**
* Creates a copy of the Rng, thus the copy provides exactly the same random sequence as the original.
*/
ANKERL_NANOBENCH(NODISCARD) Rng copy() const noexcept;
/**
* @brief Produces a 64bit random value. This should be very fast, thus it is marked as inline. In my benchmark, this is ~46 times
* faster than `std::default_random_engine` for producing 64bit random values. It seems that the fastest std contender is
* `std::mt19937_64`. Still, this RNG is 2-3 times as fast.
*
* @return uint64_t The next 64 bit random value.
*/
inline uint64_t operator()() noexcept;
// This is slightly biased. See
/**
* Generates a random number between 0 and range (excluding range).
*
* The algorithm only produces 32bit numbers, and is slightly biased. The effect is quite small unless your range is close to the
* maximum value of an integer. It is possible to correct the bias with rejection sampling (see
* [here](https://lemire.me/blog/2016/06/30/fast-random-shuffling/), but this is most likely irrelevant in practices for the
* purposes of this Rng.
*
* See Daniel Lemire's blog post [A fast alternative to the modulo
* reduction](https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/)
*
* @param range Upper exclusive range. E.g a value of 3 will generate random numbers 0, 1, 2.
* @return uint32_t Generated random values in range [0, range(.
*/
inline uint32_t bounded(uint32_t range) noexcept;
// random double in range [0, 1(
// see http://prng.di.unimi.it/
/**
* Provides a random uniform double value between 0 and 1. This uses the method described in [Generating uniform doubles in the
* unit interval](http://prng.di.unimi.it/), and is extremely fast.
*
* @return double Uniformly distributed double value in range [0,1(, excluding 1.
*/
inline double uniform01() noexcept;
/**
* Shuffles all entries in the given container. Although this has a slight bias due to the implementation of bounded(), this is
* preferable to `std::shuffle` because it is over 5 times faster. See Daniel Lemire's blog post [Fast random
* shuffling](https://lemire.me/blog/2016/06/30/fast-random-shuffling/).
*
* @param container The whole container will be shuffled.
*/
template <typename Container>
void shuffle(Container& container) noexcept;
/**
* Extracts the full state of the generator, e.g. for serialization. For this RNG this is just 2 values, but to stay API compatible
* with future implementations that potentially use more state, we use a vector.
*
* @return Vector containing the full state:
*/
std::vector<uint64_t> state() const;
private:
static constexpr uint64_t rotl(uint64_t x, unsigned k) noexcept;
uint64_t mX;
uint64_t mY;
};
/**
* @brief Main entry point to nanobench's benchmarking facility.
*
* It holds configuration and results from one or more benchmark runs. Usually it is used in a single line, where the object is
* constructed, configured, and then a benchmark is run. E.g. like this:
*
* ankerl::nanobench::Bench().unit("byte").batch(1000).run("random fluctuations", [&] {
* // here be the benchmark code
* });
*
* In that example Bench() constructs the benchmark, it is then configured with unit() and batch(), and after configuration a
* benchmark is executed with run(). Once run() has finished, it prints the result to `std::cout`. It would also store the results
* in the Bench instance, but in this case the object is immediately destroyed so it's not available any more.
*/
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
class Bench {
public:
/**
* @brief Creates a new benchmark for configuration and running of benchmarks.
*/
Bench();
Bench(Bench&& other);
Bench& operator=(Bench&& other);
Bench(Bench const& other);
Bench& operator=(Bench const& other);
~Bench() noexcept;
/*!
@brief Repeatedly calls `op()` based on the configuration, and performs measurements.
This call is marked with `noinline` to prevent the compiler to optimize beyond different benchmarks. This can have quite a big
effect on benchmark accuracy.
@verbatim embed:rst
.. note::
Each call to your lambda must have a side effect that the compiler can't possibly optimize it away. E.g. add a result to an
externally defined number (like `x` in the above example), and finally call `doNotOptimizeAway` on the variables the compiler
must not remove. You can also use :cpp:func:`ankerl::nanobench::doNotOptimizeAway` directly in the lambda, but be aware that
this has a small overhead.
@endverbatim
@tparam Op The code to benchmark.
*/
template <typename Op>
ANKERL_NANOBENCH(NOINLINE)
Bench& run(char const* benchmarkName, Op&& op);
template <typename Op>
ANKERL_NANOBENCH(NOINLINE)
Bench& run(std::string const& benchmarkName, Op&& op);
/**
* @brief Same as run(char const* benchmarkName, Op op), but instead uses the previously set name.
* @tparam Op The code to benchmark.
*/
template <typename Op>
ANKERL_NANOBENCH(NOINLINE)
Bench& run(Op&& op);
/**
* @brief Title of the benchmark, will be shown in the table header. Changing the title will start a new markdown table.
*
* @param benchmarkTitle The title of the benchmark.
*/
Bench& title(char const* benchmarkTitle);
Bench& title(std::string const& benchmarkTitle);
ANKERL_NANOBENCH(NODISCARD) std::string const& title() const noexcept;
/// Name of the benchmark, will be shown in the table row.
Bench& name(char const* benchmarkName);
Bench& name(std::string const& benchmarkName);
ANKERL_NANOBENCH(NODISCARD) std::string const& name() const noexcept;
/**
* @brief Sets the batch size.
*
* E.g. number of processed byte, or some other metric for the size of the processed data in each iteration. If you benchmark
* hashing of a 1000 byte long string and want byte/sec as a result, you can specify 1000 as the batch size.
*
* @tparam T Any input type is internally cast to `double`.
* @param b batch size
*/
template <typename T>
Bench& batch(T b) noexcept;
ANKERL_NANOBENCH(NODISCARD) double batch() const noexcept;
/**
* @brief Sets the operation unit.
*
* Defaults to "op". Could be e.g. "byte" for string processing. This is used for the table header, e.g. to show `ns/byte`. Use
* singular (*byte*, not *bytes*). A change clears the currently collected results.
*
* @param unit The unit name.
*/
Bench& unit(char const* unit);
Bench& unit(std::string const& unit);
ANKERL_NANOBENCH(NODISCARD) std::string const& unit() const noexcept;
/**
* @brief Sets the time unit to be used for the default output.
*
* Nanobench defaults to using ns (nanoseconds) as output in the markdown. For some benchmarks this is too coarse, so it is
* possible to configure this. E.g. use `timeUnit(1ms, "ms")` to show `ms/op` instead of `ns/op`.
*
* @param tu Time unit to display the results in, default is 1ns.
* @param tuName Name for the time unit, default is "ns"
*/
Bench& timeUnit(std::chrono::duration<double> const& tu, std::string const& tuName);
ANKERL_NANOBENCH(NODISCARD) std::string const& timeUnitName() const noexcept;
ANKERL_NANOBENCH(NODISCARD) std::chrono::duration<double> const& timeUnit() const noexcept;
/**
* @brief Set the output stream where the resulting markdown table will be printed to.
*
* The default is `&std::cout`. You can disable all output by setting `nullptr`.
*
* @param outstream Pointer to output stream, can be `nullptr`.
*/
Bench& output(std::ostream* outstream) noexcept;
ANKERL_NANOBENCH(NODISCARD) std::ostream* output() const noexcept;
/**
* Modern processors have a very accurate clock, being able to measure as low as 20 nanoseconds. This is the main trick nanobech to
* be so fast: we find out how accurate the clock is, then run the benchmark only so often that the clock's accuracy is good enough
* for accurate measurements.
*
* The default is to run one epoch for 1000 times the clock resolution. So for 20ns resolution and 11 epochs, this gives a total
* runtime of
*
* @f[
* 20ns * 1000 * 11 \approx 0.2ms
* @f]
*
* To be precise, nanobench adds a 0-20% random noise to each evaluation. This is to prevent any aliasing effects, and further
* improves accuracy.
*
* Total runtime will be higher though: Some initial time is needed to find out the target number of iterations for each epoch, and
* there is some overhead involved to start & stop timers and calculate resulting statistics and writing the output.
*
* @param multiple Target number of times of clock resolution. Usually 1000 is a good compromise between runtime and accuracy.
*/
Bench& clockResolutionMultiple(size_t multiple) noexcept;
ANKERL_NANOBENCH(NODISCARD) size_t clockResolutionMultiple() const noexcept;
/**
* @brief Controls number of epochs, the number of measurements to perform.
*
* The reported result will be the median of evaluation of each epoch. The higher you choose this, the more
* deterministic the result be and outliers will be more easily removed. Also the `err%` will be more accurate the higher this
* number is. Note that the `err%` will not necessarily decrease when number of epochs is increased. But it will be a more accurate
* representation of the benchmarked code's runtime stability.
*
* Choose the value wisely. In practice, 11 has been shown to be a reasonable choice between runtime performance and accuracy.
* This setting goes hand in hand with minEpocIterations() (or minEpochTime()). If you are more interested in *median* runtime, you
* might want to increase epochs(). If you are more interested in *mean* runtime, you might want to increase minEpochIterations()
* instead.
*
* @param numEpochs Number of epochs.
*/
Bench& epochs(size_t numEpochs) noexcept;
ANKERL_NANOBENCH(NODISCARD) size_t epochs() const noexcept;
/**
* @brief Upper limit for the runtime of each epoch.
*
* As a safety precausion if the clock is not very accurate, we can set an upper limit for the maximum evaluation time per
* epoch. Default is 100ms. At least a single evaluation of the benchmark is performed.
*
* @see minEpochTime(), minEpochIterations()
*
* @param t Maximum target runtime for a single epoch.
*/
Bench& maxEpochTime(std::chrono::nanoseconds t) noexcept;
ANKERL_NANOBENCH(NODISCARD) std::chrono::nanoseconds maxEpochTime() const noexcept;
/**
* @brief Minimum time each epoch should take.
*
* Default is zero, so we are fully relying on clockResolutionMultiple(). In most cases this is exactly what you want. If you see
* that the evaluation is unreliable with a high `err%`, you can increase either minEpochTime() or minEpochIterations().
*
* @see maxEpochTime(), minEpochIterations()
*
* @param t Minimum time each epoch should take.
*/
Bench& minEpochTime(std::chrono::nanoseconds t) noexcept;
ANKERL_NANOBENCH(NODISCARD) std::chrono::nanoseconds minEpochTime() const noexcept;
/**
* @brief Sets the minimum number of iterations each epoch should take.
*
* Default is 1, and we rely on clockResolutionMultiple(). If the `err%` is high and you want a more smooth result, you might want
* to increase the minimum number or iterations, or increase the minEpochTime().
*
* @see minEpochTime(), maxEpochTime(), minEpochIterations()
*
* @param numIters Minimum number of iterations per epoch.
*/
Bench& minEpochIterations(uint64_t numIters) noexcept;
ANKERL_NANOBENCH(NODISCARD) uint64_t minEpochIterations() const noexcept;
/**
* Sets exactly the number of iterations for each epoch. Ignores all other epoch limits. This forces nanobench to use exactly
* the given number of iterations for each epoch, not more and not less. Default is 0 (disabled).
*
* @param numIters Exact number of iterations to use. Set to 0 to disable.
*/
Bench& epochIterations(uint64_t numIters) noexcept;
ANKERL_NANOBENCH(NODISCARD) uint64_t epochIterations() const noexcept;
/**
* @brief Sets a number of iterations that are initially performed without any measurements.
*
* Some benchmarks need a few evaluations to warm up caches / database / whatever access. Normally this should not be needed, since
* we show the median result so initial outliers will be filtered away automatically. If the warmup effect is large though, you
* might want to set it. Default is 0.
*
* @param numWarmupIters Number of warmup iterations.
*/
Bench& warmup(uint64_t numWarmupIters) noexcept;
ANKERL_NANOBENCH(NODISCARD) uint64_t warmup() const noexcept;
/**
* @brief Marks the next run as the baseline.
*
* Call `relative(true)` to mark the run as the baseline. Successive runs will be compared to this run. It is calculated by
*
* @f[
* 100\% * \frac{baseline}{runtime}
* @f]
*
* * 100% means it is exactly as fast as the baseline
* * >100% means it is faster than the baseline. E.g. 200% means the current run is twice as fast as the baseline.
* * <100% means it is slower than the baseline. E.g. 50% means it is twice as slow as the baseline.
*
* See the tutorial section "Comparing Results" for example usage.
*
* @param isRelativeEnabled True to enable processing
*/
Bench& relative(bool isRelativeEnabled) noexcept;
ANKERL_NANOBENCH(NODISCARD) bool relative() const noexcept;
/**
* @brief Enables/disables performance counters.
*
* On Linux nanobench has a powerful feature to use performance counters. This enables counting of retired instructions, count
* number of branches, missed branches, etc. On default this is enabled, but you can disable it if you don't need that feature.
*
* @param showPerformanceCounters True to enable, false to disable.
*/
Bench& performanceCounters(bool showPerformanceCounters) noexcept;
ANKERL_NANOBENCH(NODISCARD) bool performanceCounters() const noexcept;
/**
* @brief Retrieves all benchmark results collected by the bench object so far.
*
* Each call to run() generates a Result that is stored within the Bench instance. This is mostly for advanced users who want to
* see all the nitty gritty detials.
*
* @return All results collected so far.
*/
ANKERL_NANOBENCH(NODISCARD) std::vector<Result> const& results() const noexcept;
/*!
@verbatim embed:rst
Convenience shortcut to :cpp:func:`ankerl::nanobench::doNotOptimizeAway`.
@endverbatim
*/
template <typename Arg>
Bench& doNotOptimizeAway(Arg&& arg);
/*!
@verbatim embed:rst
Sets N for asymptotic complexity calculation, so it becomes possible to calculate `Big O
<https://en.wikipedia.org/wiki/Big_O_notation>`_ from multiple benchmark evaluations.
Use :cpp:func:`ankerl::nanobench::Bench::complexityBigO` when the evaluation has finished. See the tutorial
:ref:`asymptotic-complexity` for details.
@endverbatim
@tparam T Any type is cast to `double`.
@param b Length of N for the next benchmark run, so it is possible to calculate `bigO`.
*/
template <typename T>
Bench& complexityN(T b) noexcept;
ANKERL_NANOBENCH(NODISCARD) double complexityN() const noexcept;
/*!
Calculates [Big O](https://en.wikipedia.org/wiki/Big_O_notation>) of the results with all preconfigured complexity functions.
Currently these complexity functions are fitted into the benchmark results:
@f$ \mathcal{O}(1) @f$,
@f$ \mathcal{O}(n) @f$,
@f$ \mathcal{O}(\log{}n) @f$,
@f$ \mathcal{O}(n\log{}n) @f$,
@f$ \mathcal{O}(n^2) @f$,
@f$ \mathcal{O}(n^3) @f$.
If we e.g. evaluate the complexity of `std::sort`, this is the result of `std::cout << bench.complexityBigO()`:
```
| coefficient | err% | complexity
|--------------:|-------:|------------
| 5.08935e-09 | 2.6% | O(n log n)
| 6.10608e-08 | 8.0% | O(n)
| 1.29307e-11 | 47.2% | O(n^2)
| 2.48677e-15 | 69.6% | O(n^3)
| 9.88133e-06 | 132.3% | O(log n)
| 5.98793e-05 | 162.5% | O(1)
```
So in this case @f$ \mathcal{O}(n\log{}n) @f$ provides the best approximation.
@verbatim embed:rst
See the tutorial :ref:`asymptotic-complexity` for details.
@endverbatim
@return Evaluation results, which can be printed or otherwise inspected.
*/
std::vector<BigO> complexityBigO() const;
/**
* @brief Calculates bigO for a custom function.
*
* E.g. to calculate the mean squared error for @f$ \mathcal{O}(\log{}\log{}n) @f$, which is not part of the default set of
* complexityBigO(), you can do this:
*
* ```
* auto logLogN = bench.complexityBigO("O(log log n)", [](double n) {
* return std::log2(std::log2(n));
* });
* ```
*
* The resulting mean squared error can be printed with `std::cout << logLogN`. E.g. it prints something like this:
*
* ```text
* 2.46985e-05 * O(log log n), rms=1.48121
* ```
*
* @tparam Op Type of mapping operation.
* @param name Name for the function, e.g. "O(log log n)"
* @param op Op's operator() maps a `double` with the desired complexity function, e.g. `log2(log2(n))`.
* @return BigO Error calculation, which is streamable to std::cout.
*/
template <typename Op>
BigO complexityBigO(char const* name, Op op) const;
template <typename Op>
BigO complexityBigO(std::string const& name, Op op) const;
/*!
@verbatim embed:rst
Convenience shortcut to :cpp:func:`ankerl::nanobench::render`.
@endverbatim
*/
Bench& render(char const* templateContent, std::ostream& os);
Bench& render(std::string const& templateContent, std::ostream& os);
Bench& config(Config const& benchmarkConfig);
ANKERL_NANOBENCH(NODISCARD) Config const& config() const noexcept;
private:
Config mConfig{};
std::vector<Result> mResults{};
};
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
/**
* @brief Makes sure none of the given arguments are optimized away by the compiler.
*
* @tparam Arg Type of the argument that shouldn't be optimized away.
* @param arg The input that we mark as being used, even though we don't do anything with it.
*/
template <typename Arg>
void doNotOptimizeAway(Arg&& arg);
namespace detail {
#if defined(_MSC_VER)
void doNotOptimizeAwaySink(void const*);
template <typename T>
void doNotOptimizeAway(T const& val);
#else
// These assembly magic is directly from what Google Benchmark is doing. I have previously used what facebook's folly was doing, but
// this seemd to have compilation problems in some cases. Google Benchmark seemed to be the most well tested anyways.
// see https://github.com/google/benchmark/blob/master/include/benchmark/benchmark.h#L307
template <typename T>
void doNotOptimizeAway(T const& val) {
// NOLINTNEXTLINE(hicpp-no-assembler)
asm volatile("" : : "r,m"(val) : "memory");
}
template <typename T>
void doNotOptimizeAway(T& val) {
# if defined(__clang__)
// NOLINTNEXTLINE(hicpp-no-assembler)
asm volatile("" : "+r,m"(val) : : "memory");
# else
// NOLINTNEXTLINE(hicpp-no-assembler)
asm volatile("" : "+m,r"(val) : : "memory");
# endif
}
#endif
// internally used, but visible because run() is templated.
// Not movable/copy-able, so we simply use a pointer instead of unique_ptr. This saves us from
// having to include <memory>, and the template instantiation overhead of unique_ptr which is unfortunately quite significant.
ANKERL_NANOBENCH(IGNORE_EFFCPP_PUSH)
class IterationLogic {
public:
explicit IterationLogic(Bench const& config) noexcept;
~IterationLogic();
ANKERL_NANOBENCH(NODISCARD) uint64_t numIters() const noexcept;
void add(std::chrono::nanoseconds elapsed, PerformanceCounters const& pc) noexcept;
void moveResultTo(std::vector<Result>& results) noexcept;
private:
struct Impl;
Impl* mPimpl;
};
ANKERL_NANOBENCH(IGNORE_EFFCPP_POP)
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
class PerformanceCounters {
public:
PerformanceCounters(PerformanceCounters const&) = delete;
PerformanceCounters& operator=(PerformanceCounters const&) = delete;
PerformanceCounters();
~PerformanceCounters();
void beginMeasure();
void endMeasure();
void updateResults(uint64_t numIters);
ANKERL_NANOBENCH(NODISCARD) PerfCountSet<uint64_t> const& val() const noexcept;
ANKERL_NANOBENCH(NODISCARD) PerfCountSet<bool> const& has() const noexcept;
private:
#if ANKERL_NANOBENCH(PERF_COUNTERS)
LinuxPerformanceCounters* mPc = nullptr;
#endif
PerfCountSet<uint64_t> mVal{};
PerfCountSet<bool> mHas{};
};
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
// Gets the singleton
PerformanceCounters& performanceCounters();
} // namespace detail
class BigO {
public:
using RangeMeasure = std::vector<std::pair<double, double>>;
template <typename Op>
static RangeMeasure mapRangeMeasure(RangeMeasure data, Op op) {
for (auto& rangeMeasure : data) {
rangeMeasure.first = op(rangeMeasure.first);
}
return data;
}
static RangeMeasure collectRangeMeasure(std::vector<Result> const& results);
template <typename Op>
BigO(char const* bigOName, RangeMeasure const& rangeMeasure, Op rangeToN)
: BigO(bigOName, mapRangeMeasure(rangeMeasure, rangeToN)) {}
template <typename Op>
BigO(std::string const& bigOName, RangeMeasure const& rangeMeasure, Op rangeToN)
: BigO(bigOName, mapRangeMeasure(rangeMeasure, rangeToN)) {}
BigO(char const* bigOName, RangeMeasure const& scaledRangeMeasure);
BigO(std::string const& bigOName, RangeMeasure const& scaledRangeMeasure);
ANKERL_NANOBENCH(NODISCARD) std::string const& name() const noexcept;
ANKERL_NANOBENCH(NODISCARD) double constant() const noexcept;
ANKERL_NANOBENCH(NODISCARD) double normalizedRootMeanSquare() const noexcept;
ANKERL_NANOBENCH(NODISCARD) bool operator<(BigO const& other) const noexcept;
private:
std::string mName{};
double mConstant{};
double mNormalizedRootMeanSquare{};
};
std::ostream& operator<<(std::ostream& os, BigO const& bigO);
std::ostream& operator<<(std::ostream& os, std::vector<ankerl::nanobench::BigO> const& bigOs);
} // namespace nanobench
} // namespace ankerl
// implementation /////////////////////////////////////////////////////////////////////////////////
namespace ankerl {
namespace nanobench {
constexpr uint64_t(Rng::min)() {
return 0;
}
constexpr uint64_t(Rng::max)() {
return (std::numeric_limits<uint64_t>::max)();
}
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
uint64_t Rng::operator()() noexcept {
auto x = mX;
mX = UINT64_C(15241094284759029579) * mY;
mY = rotl(mY - x, 27);
return x;
}
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
uint32_t Rng::bounded(uint32_t range) noexcept {
uint64_t r32 = static_cast<uint32_t>(operator()());
auto multiresult = r32 * range;
return static_cast<uint32_t>(multiresult >> 32U);
}
double Rng::uniform01() noexcept {
auto i = (UINT64_C(0x3ff) << 52U) | (operator()() >> 12U);
// can't use union in c++ here for type puning, it's undefined behavior.
// std::memcpy is optimized anyways.
double d;
std::memcpy(&d, &i, sizeof(double));
return d - 1.0;
}
template <typename Container>
void Rng::shuffle(Container& container) noexcept {
auto size = static_cast<uint32_t>(container.size());
for (auto i = size; i > 1U; --i) {
using std::swap;
auto p = bounded(i); // number in [0, i)
swap(container[i - 1], container[p]);
}
}
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
constexpr uint64_t Rng::rotl(uint64_t x, unsigned k) noexcept {
return (x << k) | (x >> (64U - k));
}
template <typename Op>
ANKERL_NANOBENCH_NO_SANITIZE("integer")
Bench& Bench::run(Op&& op) {
// It is important that this method is kept short so the compiler can do better optimizations/ inlining of op()
detail::IterationLogic iterationLogic(*this);
auto& pc = detail::performanceCounters();
while (auto n = iterationLogic.numIters()) {
pc.beginMeasure();
Clock::time_point before = Clock::now();
while (n-- > 0) {
op();
}
Clock::time_point after = Clock::now();
pc.endMeasure();
pc.updateResults(iterationLogic.numIters());
iterationLogic.add(after - before, pc);
}
iterationLogic.moveResultTo(mResults);
return *this;
}
// Performs all evaluations.
template <typename Op>
Bench& Bench::run(char const* benchmarkName, Op&& op) {
name(benchmarkName);
return run(std::forward<Op>(op));
}
template <typename Op>
Bench& Bench::run(std::string const& benchmarkName, Op&& op) {
name(benchmarkName);
return run(std::forward<Op>(op));
}
template <typename Op>
BigO Bench::complexityBigO(char const* benchmarkName, Op op) const {
return BigO(benchmarkName, BigO::collectRangeMeasure(mResults), op);
}
template <typename Op>
BigO Bench::complexityBigO(std::string const& benchmarkName, Op op) const {
return BigO(benchmarkName, BigO::collectRangeMeasure(mResults), op);
}
// Set the batch size, e.g. number of processed bytes, or some other metric for the size of the processed data in each iteration.
// Any argument is cast to double.
template <typename T>
Bench& Bench::batch(T b) noexcept {
mConfig.mBatch = static_cast<double>(b);
return *this;
}
// Sets the computation complexity of the next run. Any argument is cast to double.
template <typename T>
Bench& Bench::complexityN(T n) noexcept {
mConfig.mComplexityN = static_cast<double>(n);
return *this;
}
// Convenience: makes sure none of the given arguments are optimized away by the compiler.
template <typename Arg>
Bench& Bench::doNotOptimizeAway(Arg&& arg) {
detail::doNotOptimizeAway(std::forward<Arg>(arg));
return *this;
}
// Makes sure none of the given arguments are optimized away by the compiler.
template <typename Arg>
void doNotOptimizeAway(Arg&& arg) {
detail::doNotOptimizeAway(std::forward<Arg>(arg));
}
namespace detail {
#if defined(_MSC_VER)
template <typename T>
void doNotOptimizeAway(T const& val) {
doNotOptimizeAwaySink(&val);
}
#endif
} // namespace detail
} // namespace nanobench
} // namespace ankerl
#if defined(ANKERL_NANOBENCH_IMPLEMENT)
///////////////////////////////////////////////////////////////////////////////////////////////////
// implementation part - only visible in .cpp
///////////////////////////////////////////////////////////////////////////////////////////////////
# include <algorithm> // sort, reverse
# include <atomic> // compare_exchange_strong in loop overhead
# include <cstdlib> // getenv
# include <cstring> // strstr, strncmp
# include <fstream> // ifstream to parse proc files
# include <iomanip> // setw, setprecision
# include <iostream> // cout
# include <numeric> // accumulate
# include <random> // random_device
# include <sstream> // to_s in Number
# include <stdexcept> // throw for rendering templates
# include <tuple> // std::tie
# if defined(__linux__)
# include <unistd.h> //sysconf
# endif
# if ANKERL_NANOBENCH(PERF_COUNTERS)
# include <map> // map
# include <linux/perf_event.h>
# include <sys/ioctl.h>
# include <sys/syscall.h>
# include <unistd.h>
# endif
// declarations ///////////////////////////////////////////////////////////////////////////////////
namespace ankerl {
namespace nanobench {
// helper stuff that is only intended to be used internally
namespace detail {
struct TableInfo;
// formatting utilities
namespace fmt {
class NumSep;
class StreamStateRestorer;
class Number;
class MarkDownColumn;
class MarkDownCode;
} // namespace fmt
} // namespace detail
} // namespace nanobench
} // namespace ankerl
// definitions ////////////////////////////////////////////////////////////////////////////////////
namespace ankerl {
namespace nanobench {
uint64_t splitMix64(uint64_t& state) noexcept;
namespace detail {
// helpers to get double values
template <typename T>
inline double d(T t) noexcept {
return static_cast<double>(t);
}
inline double d(Clock::duration duration) noexcept {
return std::chrono::duration_cast<std::chrono::duration<double>>(duration).count();
}
// Calculates clock resolution once, and remembers the result
inline Clock::duration clockResolution() noexcept;
} // namespace detail
namespace templates {
char const* csv() noexcept {
return R"DELIM("title";"name";"unit";"batch";"elapsed";"error %";"instructions";"branches";"branch misses";"total"
{{#result}}"{{title}}";"{{name}}";"{{unit}}";{{batch}};{{median(elapsed)}};{{medianAbsolutePercentError(elapsed)}};{{median(instructions)}};{{median(branchinstructions)}};{{median(branchmisses)}};{{sumProduct(iterations, elapsed)}}
{{/result}})DELIM";
}
char const* htmlBoxplot() noexcept {
return R"DELIM(<html>
<head>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
</head>
<body>
<div id="myDiv"></div>
<script>
var data = [
{{#result}}{
name: '{{name}}',
y: [{{#measurement}}{{elapsed}}{{^-last}}, {{/last}}{{/measurement}}],
},
{{/result}}
];
var title = '{{title}}';
data = data.map(a => Object.assign(a, { boxpoints: 'all', pointpos: 0, type: 'box' }));
var layout = { title: { text: title }, showlegend: false, yaxis: { title: 'time per unit', rangemode: 'tozero', autorange: true } }; Plotly.newPlot('myDiv', data, layout, {responsive: true});
</script>
</body>
</html>)DELIM";
}
char const* pyperf() noexcept {
return R"DELIM({
"benchmarks": [
{
"runs": [
{
"values": [
{{#measurement}} {{elapsed}}{{^-last}},
{{/last}}{{/measurement}}
]
}
]
}
],
"metadata": {
"loops": {{sum(iterations)}},
"inner_loops": {{batch}},
"name": "{{title}}",
"unit": "second"
},
"version": "1.0"
})DELIM";
}
char const* json() noexcept {
return R"DELIM({
"results": [
{{#result}} {
"title": "{{title}}",
"name": "{{name}}",
"unit": "{{unit}}",
"batch": {{batch}},
"complexityN": {{complexityN}},
"epochs": {{epochs}},
"clockResolution": {{clockResolution}},
"clockResolutionMultiple": {{clockResolutionMultiple}},
"maxEpochTime": {{maxEpochTime}},
"minEpochTime": {{minEpochTime}},
"minEpochIterations": {{minEpochIterations}},
"epochIterations": {{epochIterations}},
"warmup": {{warmup}},
"relative": {{relative}},
"median(elapsed)": {{median(elapsed)}},
"medianAbsolutePercentError(elapsed)": {{medianAbsolutePercentError(elapsed)}},
"median(instructions)": {{median(instructions)}},
"medianAbsolutePercentError(instructions)": {{medianAbsolutePercentError(instructions)}},
"median(cpucycles)": {{median(cpucycles)}},
"median(contextswitches)": {{median(contextswitches)}},
"median(pagefaults)": {{median(pagefaults)}},
"median(branchinstructions)": {{median(branchinstructions)}},
"median(branchmisses)": {{median(branchmisses)}},
"totalTime": {{sumProduct(iterations, elapsed)}},
"measurements": [
{{#measurement}} {
"iterations": {{iterations}},
"elapsed": {{elapsed}},
"pagefaults": {{pagefaults}},
"cpucycles": {{cpucycles}},
"contextswitches": {{contextswitches}},
"instructions": {{instructions}},
"branchinstructions": {{branchinstructions}},
"branchmisses": {{branchmisses}}
}{{^-last}},{{/-last}}
{{/measurement}} ]
}{{^-last}},{{/-last}}
{{/result}} ]
})DELIM";
}
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
struct Node {
enum class Type { tag, content, section, inverted_section };
char const* begin;
char const* end;
std::vector<Node> children;
Type type;
template <size_t N>
// NOLINTNEXTLINE(hicpp-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
bool operator==(char const (&str)[N]) const noexcept {
return static_cast<size_t>(std::distance(begin, end) + 1) == N && 0 == strncmp(str, begin, N - 1);
}
};
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
static std::vector<Node> parseMustacheTemplate(char const** tpl) {
std::vector<Node> nodes;
while (true) {
auto begin = std::strstr(*tpl, "{{");
auto end = begin;
if (begin != nullptr) {
begin += 2;
end = std::strstr(begin, "}}");
}
if (begin == nullptr || end == nullptr) {
// nothing found, finish node
nodes.emplace_back(Node{*tpl, *tpl + std::strlen(*tpl), std::vector<Node>{}, Node::Type::content});
return nodes;
}
nodes.emplace_back(Node{*tpl, begin - 2, std::vector<Node>{}, Node::Type::content});
// we found a tag
*tpl = end + 2;
switch (*begin) {
case '/':
// finished! bail out
return nodes;
case '#':
nodes.emplace_back(Node{begin + 1, end, parseMustacheTemplate(tpl), Node::Type::section});
break;
case '^':
nodes.emplace_back(Node{begin + 1, end, parseMustacheTemplate(tpl), Node::Type::inverted_section});
break;
default:
nodes.emplace_back(Node{begin, end, std::vector<Node>{}, Node::Type::tag});
break;
}
}
}
static bool generateFirstLast(Node const& n, size_t idx, size_t size, std::ostream& out) {
ANKERL_NANOBENCH_LOG("n.type=" << static_cast<int>(n.type));
bool matchFirst = n == "-first";
bool matchLast = n == "-last";
if (!matchFirst && !matchLast) {
return false;
}
bool doWrite = false;
if (n.type == Node::Type::section) {
doWrite = (matchFirst && idx == 0) || (matchLast && idx == size - 1);
} else if (n.type == Node::Type::inverted_section) {
doWrite = (matchFirst && idx != 0) || (matchLast && idx != size - 1);
}
if (doWrite) {
for (auto const& child : n.children) {
if (child.type == Node::Type::content) {
out.write(child.begin, std::distance(child.begin, child.end));
}
}
}
return true;
}
static bool matchCmdArgs(std::string const& str, std::vector<std::string>& matchResult) {
matchResult.clear();
auto idxOpen = str.find('(');
auto idxClose = str.find(')', idxOpen);
if (idxClose == std::string::npos) {
return false;
}
matchResult.emplace_back(str.substr(0, idxOpen));
// split by comma
matchResult.emplace_back(std::string{});
for (size_t i = idxOpen + 1; i != idxClose; ++i) {
if (str[i] == ' ' || str[i] == '\t') {
// skip whitespace
continue;
}
if (str[i] == ',') {
// got a comma => new string
matchResult.emplace_back(std::string{});
continue;
}
// no whitespace no comma, append
matchResult.back() += str[i];
}
return true;
}
static bool generateConfigTag(Node const& n, Config const& config, std::ostream& out) {
using detail::d;
if (n == "title") {
out << config.mBenchmarkTitle;
return true;
} else if (n == "name") {
out << config.mBenchmarkName;
return true;
} else if (n == "unit") {
out << config.mUnit;
return true;
} else if (n == "batch") {
out << config.mBatch;
return true;
} else if (n == "complexityN") {
out << config.mComplexityN;
return true;
} else if (n == "epochs") {
out << config.mNumEpochs;
return true;
} else if (n == "clockResolution") {
out << d(detail::clockResolution());
return true;
} else if (n == "clockResolutionMultiple") {
out << config.mClockResolutionMultiple;
return true;
} else if (n == "maxEpochTime") {
out << d(config.mMaxEpochTime);
return true;
} else if (n == "minEpochTime") {
out << d(config.mMinEpochTime);
return true;
} else if (n == "minEpochIterations") {
out << config.mMinEpochIterations;
return true;
} else if (n == "epochIterations") {
out << config.mEpochIterations;
return true;
} else if (n == "warmup") {
out << config.mWarmup;
return true;
} else if (n == "relative") {
out << config.mIsRelative;
return true;
}
return false;
}
static std::ostream& generateResultTag(Node const& n, Result const& r, std::ostream& out) {
if (generateConfigTag(n, r.config(), out)) {
return out;
}
// match e.g. "median(elapsed)"
// g++ 4.8 doesn't implement std::regex :(
// static std::regex const regOpArg1("^([a-zA-Z]+)\\(([a-zA-Z]*)\\)$");
// std::cmatch matchResult;
// if (std::regex_match(n.begin, n.end, matchResult, regOpArg1)) {
std::vector<std::string> matchResult;
if (matchCmdArgs(std::string(n.begin, n.end), matchResult)) {
if (matchResult.size() == 2) {
auto m = Result::fromString(matchResult[1]);
if (m == Result::Measure::_size) {
return out << 0.0;
}
if (matchResult[0] == "median") {
return out << r.median(m);
}
if (matchResult[0] == "average") {
return out << r.average(m);
}
if (matchResult[0] == "medianAbsolutePercentError") {
return out << r.medianAbsolutePercentError(m);
}
if (matchResult[0] == "sum") {
return out << r.sum(m);
}
if (matchResult[0] == "minimum") {
return out << r.minimum(m);
}
if (matchResult[0] == "maximum") {
return out << r.maximum(m);
}
} else if (matchResult.size() == 3) {
auto m1 = Result::fromString(matchResult[1]);
auto m2 = Result::fromString(matchResult[2]);
if (m1 == Result::Measure::_size || m2 == Result::Measure::_size) {
return out << 0.0;
}
if (matchResult[0] == "sumProduct") {
return out << r.sumProduct(m1, m2);
}
}
}
// match e.g. "sumProduct(elapsed, iterations)"
// static std::regex const regOpArg2("^([a-zA-Z]+)\\(([a-zA-Z]*)\\s*,\\s+([a-zA-Z]*)\\)$");
// nothing matches :(
throw std::runtime_error("command '" + std::string(n.begin, n.end) + "' not understood");
}
static void generateResultMeasurement(std::vector<Node> const& nodes, size_t idx, Result const& r, std::ostream& out) {
for (auto const& n : nodes) {
if (!generateFirstLast(n, idx, r.size(), out)) {
ANKERL_NANOBENCH_LOG("n.type=" << static_cast<int>(n.type));
switch (n.type) {
case Node::Type::content:
out.write(n.begin, std::distance(n.begin, n.end));
break;
case Node::Type::inverted_section:
throw std::runtime_error("got a inverted section inside measurement");
case Node::Type::section:
throw std::runtime_error("got a section inside measurement");
case Node::Type::tag: {
auto m = Result::fromString(std::string(n.begin, n.end));
if (m == Result::Measure::_size || !r.has(m)) {
out << 0.0;
} else {
out << r.get(idx, m);
}
break;
}
}
}
}
}
static void generateResult(std::vector<Node> const& nodes, size_t idx, std::vector<Result> const& results, std::ostream& out) {
auto const& r = results[idx];
for (auto const& n : nodes) {
if (!generateFirstLast(n, idx, results.size(), out)) {
ANKERL_NANOBENCH_LOG("n.type=" << static_cast<int>(n.type));
switch (n.type) {
case Node::Type::content:
out.write(n.begin, std::distance(n.begin, n.end));
break;
case Node::Type::inverted_section:
throw std::runtime_error("got a inverted section inside result");
case Node::Type::section:
if (n == "measurement") {
for (size_t i = 0; i < r.size(); ++i) {
generateResultMeasurement(n.children, i, r, out);
}
} else {
throw std::runtime_error("got a section inside result");
}
break;
case Node::Type::tag:
generateResultTag(n, r, out);
break;
}
}
}
}
} // namespace templates
// helper stuff that only intended to be used internally
namespace detail {
char const* getEnv(char const* name);
bool isEndlessRunning(std::string const& name);
bool isWarningsEnabled();
template <typename T>
T parseFile(std::string const& filename);
void gatherStabilityInformation(std::vector<std::string>& warnings, std::vector<std::string>& recommendations);
void printStabilityInformationOnce(std::ostream* os);
// remembers the last table settings used. When it changes, a new table header is automatically written for the new entry.
uint64_t& singletonHeaderHash() noexcept;
// determines resolution of the given clock. This is done by measuring multiple times and returning the minimum time difference.
Clock::duration calcClockResolution(size_t numEvaluations) noexcept;
// formatting utilities
namespace fmt {
// adds thousands separator to numbers
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
class NumSep : public std::numpunct<char> {
public:
explicit NumSep(char sep);
char do_thousands_sep() const override;
std::string do_grouping() const override;
private:
char mSep;
};
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
// RAII to save & restore a stream's state
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
class StreamStateRestorer {
public:
explicit StreamStateRestorer(std::ostream& s);
~StreamStateRestorer();
// sets back all stream info that we remembered at construction
void restore();
// don't allow copying / moving
StreamStateRestorer(StreamStateRestorer const&) = delete;
StreamStateRestorer& operator=(StreamStateRestorer const&) = delete;
StreamStateRestorer(StreamStateRestorer&&) = delete;
StreamStateRestorer& operator=(StreamStateRestorer&&) = delete;
private:
std::ostream& mStream;
std::locale mLocale;
std::streamsize const mPrecision;
std::streamsize const mWidth;
std::ostream::char_type const mFill;
std::ostream::fmtflags const mFmtFlags;
};
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
// Number formatter
class Number {
public:
Number(int width, int precision, double value);
Number(int width, int precision, int64_t value);
std::string to_s() const;
private:
friend std::ostream& operator<<(std::ostream& os, Number const& n);
std::ostream& write(std::ostream& os) const;
int mWidth;
int mPrecision;
double mValue;
};
// helper replacement for std::to_string of signed/unsigned numbers so we are locale independent
std::string to_s(uint64_t s);
std::ostream& operator<<(std::ostream& os, Number const& n);
class MarkDownColumn {
public:
MarkDownColumn(int w, int prec, std::string const& tit, std::string const& suff, double val);
std::string title() const;
std::string separator() const;
std::string invalid() const;
std::string value() const;
private:
int mWidth;
int mPrecision;
std::string mTitle;
std::string mSuffix;
double mValue;
};
// Formats any text as markdown code, escaping backticks.
class MarkDownCode {
public:
explicit MarkDownCode(std::string const& what);
private:
friend std::ostream& operator<<(std::ostream& os, MarkDownCode const& mdCode);
std::ostream& write(std::ostream& os) const;
std::string mWhat{};
};
std::ostream& operator<<(std::ostream& os, MarkDownCode const& mdCode);
} // namespace fmt
} // namespace detail
} // namespace nanobench
} // namespace ankerl
// implementation /////////////////////////////////////////////////////////////////////////////////
namespace ankerl {
namespace nanobench {
void render(char const* mustacheTemplate, std::vector<Result> const& results, std::ostream& out) {
detail::fmt::StreamStateRestorer restorer(out);
out.precision(std::numeric_limits<double>::digits10);
auto nodes = templates::parseMustacheTemplate(&mustacheTemplate);
for (auto const& n : nodes) {
ANKERL_NANOBENCH_LOG("n.type=" << static_cast<int>(n.type));
switch (n.type) {
case templates::Node::Type::content:
out.write(n.begin, std::distance(n.begin, n.end));
break;
case templates::Node::Type::inverted_section:
throw std::runtime_error("unknown list '" + std::string(n.begin, n.end) + "'");
case templates::Node::Type::section:
if (n == "result") {
const size_t nbResults = results.size();
for (size_t i = 0; i < nbResults; ++i) {
generateResult(n.children, i, results, out);
}
} else if (n == "measurement") {
if (results.size() != 1) {
throw std::runtime_error(
"render: can only use section 'measurement' here if there is a single result, but there are " +
detail::fmt::to_s(results.size()));
}
// when we only have a single result, we can immediately go into its measurement.
auto const& r = results.front();
for (size_t i = 0; i < r.size(); ++i) {
generateResultMeasurement(n.children, i, r, out);
}
} else {
throw std::runtime_error("render: unknown section '" + std::string(n.begin, n.end) + "'");
}
break;
case templates::Node::Type::tag:
if (results.size() == 1) {
// result & config are both supported there
generateResultTag(n, results.front(), out);
} else {
// This just uses the last result's config.
if (!generateConfigTag(n, results.back().config(), out)) {
throw std::runtime_error("unknown tag '" + std::string(n.begin, n.end) + "'");
}
}
break;
}
}
}
void render(std::string const& mustacheTemplate, std::vector<Result> const& results, std::ostream& out) {
render(mustacheTemplate.c_str(), results, out);
}
void render(char const* mustacheTemplate, const Bench& bench, std::ostream& out) {
render(mustacheTemplate, bench.results(), out);
}
void render(std::string const& mustacheTemplate, const Bench& bench, std::ostream& out) {
render(mustacheTemplate.c_str(), bench.results(), out);
}
namespace detail {
PerformanceCounters& performanceCounters() {
# if defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wexit-time-destructors"
# endif
static PerformanceCounters pc;
# if defined(__clang__)
# pragma clang diagnostic pop
# endif
return pc;
}
// Windows version of doNotOptimizeAway
// see https://github.com/google/benchmark/blob/master/include/benchmark/benchmark.h#L307
// see https://github.com/facebook/folly/blob/master/folly/Benchmark.h#L280
// see https://docs.microsoft.com/en-us/cpp/preprocessor/optimize
# if defined(_MSC_VER)
# pragma optimize("", off)
void doNotOptimizeAwaySink(void const*) {}
# pragma optimize("", on)
# endif
template <typename T>
T parseFile(std::string const& filename) {
std::ifstream fin(filename);
T num{};
fin >> num;
return num;
}
char const* getEnv(char const* name) {
# if defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable : 4996) // getenv': This function or variable may be unsafe.
# endif
return std::getenv(name);
# if defined(_MSC_VER)
# pragma warning(pop)
# endif
}
bool isEndlessRunning(std::string const& name) {
auto endless = getEnv("NANOBENCH_ENDLESS");
return nullptr != endless && endless == name;
}
// True when environment variable NANOBENCH_SUPPRESS_WARNINGS is either not set at all, or set to "0"
bool isWarningsEnabled() {
auto suppression = getEnv("NANOBENCH_SUPPRESS_WARNINGS");
return nullptr == suppression || suppression == std::string("0");
}
void gatherStabilityInformation(std::vector<std::string>& warnings, std::vector<std::string>& recommendations) {
warnings.clear();
recommendations.clear();
bool recommendCheckFlags = false;
# if defined(DEBUG)
warnings.emplace_back("DEBUG defined");
recommendCheckFlags = true;
# endif
bool recommendPyPerf = false;
# if defined(__linux__)
auto nprocs = sysconf(_SC_NPROCESSORS_CONF);
if (nprocs <= 0) {
warnings.emplace_back("couldn't figure out number of processors - no governor, turbo check possible");
} else {
// check frequency scaling
for (long id = 0; id < nprocs; ++id) {
auto idStr = detail::fmt::to_s(static_cast<uint64_t>(id));
auto sysCpu = "/sys/devices/system/cpu/cpu" + idStr;
auto minFreq = parseFile<int64_t>(sysCpu + "/cpufreq/scaling_min_freq");
auto maxFreq = parseFile<int64_t>(sysCpu + "/cpufreq/scaling_max_freq");
if (minFreq != maxFreq) {
auto minMHz = static_cast<double>(minFreq) / 1000.0;
auto maxMHz = static_cast<double>(maxFreq) / 1000.0;
warnings.emplace_back("CPU frequency scaling enabled: CPU " + idStr + " between " +
detail::fmt::Number(1, 1, minMHz).to_s() + " and " + detail::fmt::Number(1, 1, maxMHz).to_s() +
" MHz");
recommendPyPerf = true;
break;
}
}
auto currentGovernor = parseFile<std::string>("/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor");
if ("performance" != currentGovernor) {
warnings.emplace_back("CPU governor is '" + currentGovernor + "' but should be 'performance'");
recommendPyPerf = true;
}
if (0 == parseFile<int>("/sys/devices/system/cpu/intel_pstate/no_turbo")) {
warnings.emplace_back("Turbo is enabled, CPU frequency will fluctuate");
recommendPyPerf = true;
}
}
# endif
if (recommendCheckFlags) {
recommendations.emplace_back("Make sure you compile for Release");
}
if (recommendPyPerf) {
recommendations.emplace_back("Use 'pyperf system tune' before benchmarking. See https://github.com/psf/pyperf");
}
}
void printStabilityInformationOnce(std::ostream* outStream) {
static bool shouldPrint = true;
if (shouldPrint && outStream && isWarningsEnabled()) {
auto& os = *outStream;
shouldPrint = false;
std::vector<std::string> warnings;
std::vector<std::string> recommendations;
gatherStabilityInformation(warnings, recommendations);
if (warnings.empty()) {
return;
}
os << "Warning, results might be unstable:" << std::endl;
for (auto const& w : warnings) {
os << "* " << w << std::endl;
}
os << std::endl << "Recommendations" << std::endl;
for (auto const& r : recommendations) {
os << "* " << r << std::endl;
}
}
}
// remembers the last table settings used. When it changes, a new table header is automatically written for the new entry.
uint64_t& singletonHeaderHash() noexcept {
static uint64_t sHeaderHash{};
return sHeaderHash;
}
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
inline uint64_t hash_combine(uint64_t seed, uint64_t val) {
return seed ^ (val + UINT64_C(0x9e3779b9) + (seed << 6U) + (seed >> 2U));
}
// determines resolution of the given clock. This is done by measuring multiple times and returning the minimum time difference.
Clock::duration calcClockResolution(size_t numEvaluations) noexcept {
auto bestDuration = Clock::duration::max();
Clock::time_point tBegin;
Clock::time_point tEnd;
for (size_t i = 0; i < numEvaluations; ++i) {
tBegin = Clock::now();
do {
tEnd = Clock::now();
} while (tBegin == tEnd);
bestDuration = (std::min)(bestDuration, tEnd - tBegin);
}
return bestDuration;
}
// Calculates clock resolution once, and remembers the result
Clock::duration clockResolution() noexcept {
static Clock::duration sResolution = calcClockResolution(20);
return sResolution;
}
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
struct IterationLogic::Impl {
enum class State { warmup, upscaling_runtime, measuring, endless };
explicit Impl(Bench const& bench)
: mBench(bench)
, mResult(bench.config()) {
printStabilityInformationOnce(mBench.output());
// determine target runtime per epoch
mTargetRuntimePerEpoch = detail::clockResolution() * mBench.clockResolutionMultiple();
if (mTargetRuntimePerEpoch > mBench.maxEpochTime()) {
mTargetRuntimePerEpoch = mBench.maxEpochTime();
}
if (mTargetRuntimePerEpoch < mBench.minEpochTime()) {
mTargetRuntimePerEpoch = mBench.minEpochTime();
}
if (isEndlessRunning(mBench.name())) {
std::cerr << "NANOBENCH_ENDLESS set: running '" << mBench.name() << "' endlessly" << std::endl;
mNumIters = (std::numeric_limits<uint64_t>::max)();
mState = State::endless;
} else if (0 != mBench.warmup()) {
mNumIters = mBench.warmup();
mState = State::warmup;
} else if (0 != mBench.epochIterations()) {
// exact number of iterations
mNumIters = mBench.epochIterations();
mState = State::measuring;
} else {
mNumIters = mBench.minEpochIterations();
mState = State::upscaling_runtime;
}
}
// directly calculates new iters based on elapsed&iters, and adds a 10% noise. Makes sure we don't underflow.
ANKERL_NANOBENCH(NODISCARD) uint64_t calcBestNumIters(std::chrono::nanoseconds elapsed, uint64_t iters) noexcept {
auto doubleElapsed = d(elapsed);
auto doubleTargetRuntimePerEpoch = d(mTargetRuntimePerEpoch);
auto doubleNewIters = doubleTargetRuntimePerEpoch / doubleElapsed * d(iters);
auto doubleMinEpochIters = d(mBench.minEpochIterations());
if (doubleNewIters < doubleMinEpochIters) {
doubleNewIters = doubleMinEpochIters;
}
doubleNewIters *= 1.0 + 0.2 * mRng.uniform01();
// +0.5 for correct rounding when casting
// NOLINTNEXTLINE(bugprone-incorrect-roundings)
return static_cast<uint64_t>(doubleNewIters + 0.5);
}
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined") void upscale(std::chrono::nanoseconds elapsed) {
if (elapsed * 10 < mTargetRuntimePerEpoch) {
// we are far below the target runtime. Multiply iterations by 10 (with overflow check)
if (mNumIters * 10 < mNumIters) {
// overflow :-(
showResult("iterations overflow. Maybe your code got optimized away?");
mNumIters = 0;
return;
}
mNumIters *= 10;
} else {
mNumIters = calcBestNumIters(elapsed, mNumIters);
}
}
void add(std::chrono::nanoseconds elapsed, PerformanceCounters const& pc) noexcept {
# if defined(ANKERL_NANOBENCH_LOG_ENABLED)
auto oldIters = mNumIters;
# endif
switch (mState) {
case State::warmup:
if (isCloseEnoughForMeasurements(elapsed)) {
// if elapsed is close enough, we can skip upscaling and go right to measurements
// still, we don't add the result to the measurements.
mState = State::measuring;
mNumIters = calcBestNumIters(elapsed, mNumIters);
} else {
// not close enough: switch to upscaling
mState = State::upscaling_runtime;
upscale(elapsed);
}
break;
case State::upscaling_runtime:
if (isCloseEnoughForMeasurements(elapsed)) {
// if we are close enough, add measurement and switch to always measuring
mState = State::measuring;
mTotalElapsed += elapsed;
mTotalNumIters += mNumIters;
mResult.add(elapsed, mNumIters, pc);
mNumIters = calcBestNumIters(mTotalElapsed, mTotalNumIters);
} else {
upscale(elapsed);
}
break;
case State::measuring:
// just add measurements - no questions asked. Even when runtime is low. But we can't ignore
// that fluctuation, or else we would bias the result
mTotalElapsed += elapsed;
mTotalNumIters += mNumIters;
mResult.add(elapsed, mNumIters, pc);
if (0 != mBench.epochIterations()) {
mNumIters = mBench.epochIterations();
} else {
mNumIters = calcBestNumIters(mTotalElapsed, mTotalNumIters);
}
break;
case State::endless:
mNumIters = (std::numeric_limits<uint64_t>::max)();
break;
}
if (static_cast<uint64_t>(mResult.size()) == mBench.epochs()) {
// we got all the results that we need, finish it
showResult("");
mNumIters = 0;
}
ANKERL_NANOBENCH_LOG(mBench.name() << ": " << detail::fmt::Number(20, 3, static_cast<double>(elapsed.count())) << " elapsed, "
<< detail::fmt::Number(20, 3, static_cast<double>(mTargetRuntimePerEpoch.count()))
<< " target. oldIters=" << oldIters << ", mNumIters=" << mNumIters
<< ", mState=" << static_cast<int>(mState));
}
void showResult(std::string const& errorMessage) const {
ANKERL_NANOBENCH_LOG(errorMessage);
if (mBench.output() != nullptr) {
// prepare column data ///////
std::vector<fmt::MarkDownColumn> columns;
auto rMedian = mResult.median(Result::Measure::elapsed);
if (mBench.relative()) {
double d = 100.0;
if (!mBench.results().empty()) {
d = rMedian <= 0.0 ? 0.0 : mBench.results().front().median(Result::Measure::elapsed) / rMedian * 100.0;
}
columns.emplace_back(11, 1, "relative", "%", d);
}
if (mBench.complexityN() > 0) {
columns.emplace_back(14, 0, "complexityN", "", mBench.complexityN());
}
columns.emplace_back(22, 2, mBench.timeUnitName() + "/" + mBench.unit(), "",
rMedian / (mBench.timeUnit().count() * mBench.batch()));
columns.emplace_back(22, 2, mBench.unit() + "/s", "", rMedian <= 0.0 ? 0.0 : mBench.batch() / rMedian);
double rErrorMedian = mResult.medianAbsolutePercentError(Result::Measure::elapsed);
columns.emplace_back(10, 1, "err%", "%", rErrorMedian * 100.0);
double rInsMedian = -1.0;
if (mBench.performanceCounters() && mResult.has(Result::Measure::instructions)) {
rInsMedian = mResult.median(Result::Measure::instructions);
columns.emplace_back(18, 2, "ins/" + mBench.unit(), "", rInsMedian / mBench.batch());
}
double rCycMedian = -1.0;
if (mBench.performanceCounters() && mResult.has(Result::Measure::cpucycles)) {
rCycMedian = mResult.median(Result::Measure::cpucycles);
columns.emplace_back(18, 2, "cyc/" + mBench.unit(), "", rCycMedian / mBench.batch());
}
if (rInsMedian > 0.0 && rCycMedian > 0.0) {
columns.emplace_back(9, 3, "IPC", "", rCycMedian <= 0.0 ? 0.0 : rInsMedian / rCycMedian);
}
if (mBench.performanceCounters() && mResult.has(Result::Measure::branchinstructions)) {
double rBraMedian = mResult.median(Result::Measure::branchinstructions);
columns.emplace_back(17, 2, "bra/" + mBench.unit(), "", rBraMedian / mBench.batch());
if (mResult.has(Result::Measure::branchmisses)) {
double p = 0.0;
if (rBraMedian >= 1e-9) {
p = 100.0 * mResult.median(Result::Measure::branchmisses) / rBraMedian;
}
columns.emplace_back(10, 1, "miss%", "%", p);
}
}
columns.emplace_back(12, 2, "total", "", mResult.sumProduct(Result::Measure::iterations, Result::Measure::elapsed));
// write everything
auto& os = *mBench.output();
// combine all elements that are relevant for printing the header
uint64_t hash = 0;
hash = hash_combine(std::hash<std::string>{}(mBench.unit()), hash);
hash = hash_combine(std::hash<std::string>{}(mBench.title()), hash);
hash = hash_combine(std::hash<std::string>{}(mBench.timeUnitName()), hash);
hash = hash_combine(std::hash<double>{}(mBench.timeUnit().count()), hash);
hash = hash_combine(std::hash<bool>{}(mBench.relative()), hash);
hash = hash_combine(std::hash<bool>{}(mBench.performanceCounters()), hash);
if (hash != singletonHeaderHash()) {
singletonHeaderHash() = hash;
// no result yet, print header
os << std::endl;
for (auto const& col : columns) {
os << col.title();
}
os << "| " << mBench.title() << std::endl;
for (auto const& col : columns) {
os << col.separator();
}
os << "|:" << std::string(mBench.title().size() + 1U, '-') << std::endl;
}
if (!errorMessage.empty()) {
for (auto const& col : columns) {
os << col.invalid();
}
os << "| :boom: " << fmt::MarkDownCode(mBench.name()) << " (" << errorMessage << ')' << std::endl;
} else {
for (auto const& col : columns) {
os << col.value();
}
os << "| ";
auto showUnstable = isWarningsEnabled() && rErrorMedian >= 0.05;
if (showUnstable) {
os << ":wavy_dash: ";
}
os << fmt::MarkDownCode(mBench.name());
if (showUnstable) {
auto avgIters = static_cast<double>(mTotalNumIters) / static_cast<double>(mBench.epochs());
// NOLINTNEXTLINE(bugprone-incorrect-roundings)
auto suggestedIters = static_cast<uint64_t>(avgIters * 10 + 0.5);
os << " (Unstable with ~" << detail::fmt::Number(1, 1, avgIters)
<< " iters. Increase `minEpochIterations` to e.g. " << suggestedIters << ")";
}
os << std::endl;
}
}
}
ANKERL_NANOBENCH(NODISCARD) bool isCloseEnoughForMeasurements(std::chrono::nanoseconds elapsed) const noexcept {
return elapsed * 3 >= mTargetRuntimePerEpoch * 2;
}
uint64_t mNumIters = 1;
Bench const& mBench;
std::chrono::nanoseconds mTargetRuntimePerEpoch{};
Result mResult;
Rng mRng{123};
std::chrono::nanoseconds mTotalElapsed{};
uint64_t mTotalNumIters = 0;
State mState = State::upscaling_runtime;
};
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
IterationLogic::IterationLogic(Bench const& bench) noexcept
: mPimpl(new Impl(bench)) {}
IterationLogic::~IterationLogic() {
if (mPimpl) {
delete mPimpl;
}
}
uint64_t IterationLogic::numIters() const noexcept {
ANKERL_NANOBENCH_LOG(mPimpl->mBench.name() << ": mNumIters=" << mPimpl->mNumIters);
return mPimpl->mNumIters;
}
void IterationLogic::add(std::chrono::nanoseconds elapsed, PerformanceCounters const& pc) noexcept {
mPimpl->add(elapsed, pc);
}
void IterationLogic::moveResultTo(std::vector<Result>& results) noexcept {
results.emplace_back(std::move(mPimpl->mResult));
}
# if ANKERL_NANOBENCH(PERF_COUNTERS)
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
class LinuxPerformanceCounters {
public:
struct Target {
Target(uint64_t* targetValue_, bool correctMeasuringOverhead_, bool correctLoopOverhead_)
: targetValue(targetValue_)
, correctMeasuringOverhead(correctMeasuringOverhead_)
, correctLoopOverhead(correctLoopOverhead_) {}
uint64_t* targetValue{};
bool correctMeasuringOverhead{};
bool correctLoopOverhead{};
};
~LinuxPerformanceCounters();
// quick operation
inline void start() {}
inline void stop() {}
bool monitor(perf_sw_ids swId, Target target);
bool monitor(perf_hw_id hwId, Target target);
bool hasError() const noexcept {
return mHasError;
}
// Just reading data is faster than enable & disabling.
// we subtract data ourselves.
inline void beginMeasure() {
if (mHasError) {
return;
}
// NOLINTNEXTLINE(hicpp-signed-bitwise)
mHasError = -1 == ioctl(mFd, PERF_EVENT_IOC_RESET, PERF_IOC_FLAG_GROUP);
if (mHasError) {
return;
}
// NOLINTNEXTLINE(hicpp-signed-bitwise)
mHasError = -1 == ioctl(mFd, PERF_EVENT_IOC_ENABLE, PERF_IOC_FLAG_GROUP);
}
inline void endMeasure() {
if (mHasError) {
return;
}
// NOLINTNEXTLINE(hicpp-signed-bitwise)
mHasError = (-1 == ioctl(mFd, PERF_EVENT_IOC_DISABLE, PERF_IOC_FLAG_GROUP));
if (mHasError) {
return;
}
auto const numBytes = sizeof(uint64_t) * mCounters.size();
auto ret = read(mFd, mCounters.data(), numBytes);
mHasError = ret != static_cast<ssize_t>(numBytes);
}
void updateResults(uint64_t numIters);
// rounded integer division
template <typename T>
static inline T divRounded(T a, T divisor) {
return (a + divisor / 2) / divisor;
}
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
static inline uint32_t mix(uint32_t x) noexcept {
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return x;
}
template <typename Op>
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
void calibrate(Op&& op) {
// clear current calibration data,
for (auto& v : mCalibratedOverhead) {
v = UINT64_C(0);
}
// create new calibration data
auto newCalibration = mCalibratedOverhead;
for (auto& v : newCalibration) {
v = (std::numeric_limits<uint64_t>::max)();
}
for (size_t iter = 0; iter < 100; ++iter) {
beginMeasure();
op();
endMeasure();
if (mHasError) {
return;
}
for (size_t i = 0; i < newCalibration.size(); ++i) {
auto diff = mCounters[i];
if (newCalibration[i] > diff) {
newCalibration[i] = diff;
}
}
}
mCalibratedOverhead = std::move(newCalibration);
{
// calibrate loop overhead. For branches & instructions this makes sense, not so much for everything else like cycles.
// marsaglia's xorshift: mov, sal/shr, xor. Times 3.
// This has the nice property that the compiler doesn't seem to be able to optimize multiple calls any further.
// see https://godbolt.org/z/49RVQ5
uint64_t const numIters = 100000U + (std::random_device{}() & 3);
uint64_t n = numIters;
uint32_t x = 1234567;
beginMeasure();
while (n-- > 0) {
x = mix(x);
}
endMeasure();
detail::doNotOptimizeAway(x);
auto measure1 = mCounters;
n = numIters;
beginMeasure();
while (n-- > 0) {
// we now run *twice* so we can easily calculate the overhead
x = mix(x);
x = mix(x);
}
endMeasure();
detail::doNotOptimizeAway(x);
auto measure2 = mCounters;
for (size_t i = 0; i < mCounters.size(); ++i) {
// factor 2 because we have two instructions per loop
auto m1 = measure1[i] > mCalibratedOverhead[i] ? measure1[i] - mCalibratedOverhead[i] : 0;
auto m2 = measure2[i] > mCalibratedOverhead[i] ? measure2[i] - mCalibratedOverhead[i] : 0;
auto overhead = m1 * 2 > m2 ? m1 * 2 - m2 : 0;
mLoopOverhead[i] = divRounded(overhead, numIters);
}
}
}
private:
bool monitor(uint32_t type, uint64_t eventid, Target target);
std::map<uint64_t, Target> mIdToTarget{};
// start with minimum size of 3 for read_format
std::vector<uint64_t> mCounters{3};
std::vector<uint64_t> mCalibratedOverhead{3};
std::vector<uint64_t> mLoopOverhead{3};
uint64_t mTimeEnabledNanos = 0;
uint64_t mTimeRunningNanos = 0;
int mFd = -1;
bool mHasError = false;
};
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
LinuxPerformanceCounters::~LinuxPerformanceCounters() {
if (-1 != mFd) {
close(mFd);
}
}
bool LinuxPerformanceCounters::monitor(perf_sw_ids swId, LinuxPerformanceCounters::Target target) {
return monitor(PERF_TYPE_SOFTWARE, swId, target);
}
bool LinuxPerformanceCounters::monitor(perf_hw_id hwId, LinuxPerformanceCounters::Target target) {
return monitor(PERF_TYPE_HARDWARE, hwId, target);
}
// overflow is ok, it's checked
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
void LinuxPerformanceCounters::updateResults(uint64_t numIters) {
// clear old data
for (auto& id_value : mIdToTarget) {
*id_value.second.targetValue = UINT64_C(0);
}
if (mHasError) {
return;
}
mTimeEnabledNanos = mCounters[1] - mCalibratedOverhead[1];
mTimeRunningNanos = mCounters[2] - mCalibratedOverhead[2];
for (uint64_t i = 0; i < mCounters[0]; ++i) {
auto idx = static_cast<size_t>(3 + i * 2 + 0);
auto id = mCounters[idx + 1U];
auto it = mIdToTarget.find(id);
if (it != mIdToTarget.end()) {
auto& tgt = it->second;
*tgt.targetValue = mCounters[idx];
if (tgt.correctMeasuringOverhead) {
if (*tgt.targetValue >= mCalibratedOverhead[idx]) {
*tgt.targetValue -= mCalibratedOverhead[idx];
} else {
*tgt.targetValue = 0U;
}
}
if (tgt.correctLoopOverhead) {
auto correctionVal = mLoopOverhead[idx] * numIters;
if (*tgt.targetValue >= correctionVal) {
*tgt.targetValue -= correctionVal;
} else {
*tgt.targetValue = 0U;
}
}
}
}
}
bool LinuxPerformanceCounters::monitor(uint32_t type, uint64_t eventid, Target target) {
*target.targetValue = (std::numeric_limits<uint64_t>::max)();
if (mHasError) {
return false;
}
auto pea = perf_event_attr();
std::memset(&pea, 0, sizeof(perf_event_attr));
pea.type = type;
pea.size = sizeof(perf_event_attr);
pea.config = eventid;
pea.disabled = 1; // start counter as disabled
pea.exclude_kernel = 1;
pea.exclude_hv = 1;
// NOLINTNEXTLINE(hicpp-signed-bitwise)
pea.read_format = PERF_FORMAT_GROUP | PERF_FORMAT_ID | PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
const int pid = 0; // the current process
const int cpu = -1; // all CPUs
# if defined(PERF_FLAG_FD_CLOEXEC) // since Linux 3.14
const unsigned long flags = PERF_FLAG_FD_CLOEXEC;
# else
const unsigned long flags = 0;
# endif
auto fd = static_cast<int>(syscall(__NR_perf_event_open, &pea, pid, cpu, mFd, flags));
if (-1 == fd) {
return false;
}
if (-1 == mFd) {
// first call: set to fd, and use this from now on
mFd = fd;
}
uint64_t id = 0;
// NOLINTNEXTLINE(hicpp-signed-bitwise)
if (-1 == ioctl(fd, PERF_EVENT_IOC_ID, &id)) {
// couldn't get id
return false;
}
// insert into map, rely on the fact that map's references are constant.
mIdToTarget.emplace(id, target);
// prepare readformat with the correct size (after the insert)
auto size = 3 + 2 * mIdToTarget.size();
mCounters.resize(size);
mCalibratedOverhead.resize(size);
mLoopOverhead.resize(size);
return true;
}
PerformanceCounters::PerformanceCounters()
: mPc(new LinuxPerformanceCounters())
, mVal()
, mHas() {
mHas.pageFaults = mPc->monitor(PERF_COUNT_SW_PAGE_FAULTS, LinuxPerformanceCounters::Target(&mVal.pageFaults, true, false));
mHas.cpuCycles = mPc->monitor(PERF_COUNT_HW_REF_CPU_CYCLES, LinuxPerformanceCounters::Target(&mVal.cpuCycles, true, false));
mHas.contextSwitches =
mPc->monitor(PERF_COUNT_SW_CONTEXT_SWITCHES, LinuxPerformanceCounters::Target(&mVal.contextSwitches, true, false));
mHas.instructions = mPc->monitor(PERF_COUNT_HW_INSTRUCTIONS, LinuxPerformanceCounters::Target(&mVal.instructions, true, true));
mHas.branchInstructions =
mPc->monitor(PERF_COUNT_HW_BRANCH_INSTRUCTIONS, LinuxPerformanceCounters::Target(&mVal.branchInstructions, true, false));
mHas.branchMisses = mPc->monitor(PERF_COUNT_HW_BRANCH_MISSES, LinuxPerformanceCounters::Target(&mVal.branchMisses, true, false));
// mHas.branchMisses = false;
mPc->start();
mPc->calibrate([] {
auto before = ankerl::nanobench::Clock::now();
auto after = ankerl::nanobench::Clock::now();
(void)before;
(void)after;
});
if (mPc->hasError()) {
// something failed, don't monitor anything.
mHas = PerfCountSet<bool>{};
}
}
PerformanceCounters::~PerformanceCounters() {
if (nullptr != mPc) {
delete mPc;
}
}
void PerformanceCounters::beginMeasure() {
mPc->beginMeasure();
}
void PerformanceCounters::endMeasure() {
mPc->endMeasure();
}
void PerformanceCounters::updateResults(uint64_t numIters) {
mPc->updateResults(numIters);
}
# else
PerformanceCounters::PerformanceCounters() = default;
PerformanceCounters::~PerformanceCounters() = default;
void PerformanceCounters::beginMeasure() {}
void PerformanceCounters::endMeasure() {}
void PerformanceCounters::updateResults(uint64_t) {}
# endif
ANKERL_NANOBENCH(NODISCARD) PerfCountSet<uint64_t> const& PerformanceCounters::val() const noexcept {
return mVal;
}
ANKERL_NANOBENCH(NODISCARD) PerfCountSet<bool> const& PerformanceCounters::has() const noexcept {
return mHas;
}
// formatting utilities
namespace fmt {
// adds thousands separator to numbers
NumSep::NumSep(char sep)
: mSep(sep) {}
char NumSep::do_thousands_sep() const {
return mSep;
}
std::string NumSep::do_grouping() const {
return "\003";
}
// RAII to save & restore a stream's state
StreamStateRestorer::StreamStateRestorer(std::ostream& s)
: mStream(s)
, mLocale(s.getloc())
, mPrecision(s.precision())
, mWidth(s.width())
, mFill(s.fill())
, mFmtFlags(s.flags()) {}
StreamStateRestorer::~StreamStateRestorer() {
restore();
}
// sets back all stream info that we remembered at construction
void StreamStateRestorer::restore() {
mStream.imbue(mLocale);
mStream.precision(mPrecision);
mStream.width(mWidth);
mStream.fill(mFill);
mStream.flags(mFmtFlags);
}
Number::Number(int width, int precision, int64_t value)
: mWidth(width)
, mPrecision(precision)
, mValue(static_cast<double>(value)) {}
Number::Number(int width, int precision, double value)
: mWidth(width)
, mPrecision(precision)
, mValue(value) {}
std::ostream& Number::write(std::ostream& os) const {
StreamStateRestorer restorer(os);
os.imbue(std::locale(os.getloc(), new NumSep(',')));
os << std::setw(mWidth) << std::setprecision(mPrecision) << std::fixed << mValue;
return os;
}
std::string Number::to_s() const {
std::stringstream ss;
write(ss);
return ss.str();
}
std::string to_s(uint64_t n) {
std::string str;
do {
str += static_cast<char>('0' + static_cast<char>(n % 10));
n /= 10;
} while (n != 0);
std::reverse(str.begin(), str.end());
return str;
}
std::ostream& operator<<(std::ostream& os, Number const& n) {
return n.write(os);
}
MarkDownColumn::MarkDownColumn(int w, int prec, std::string const& tit, std::string const& suff, double val)
: mWidth(w)
, mPrecision(prec)
, mTitle(tit)
, mSuffix(suff)
, mValue(val) {}
std::string MarkDownColumn::title() const {
std::stringstream ss;
ss << '|' << std::setw(mWidth - 2) << std::right << mTitle << ' ';
return ss.str();
}
std::string MarkDownColumn::separator() const {
std::string sep(static_cast<size_t>(mWidth), '-');
sep.front() = '|';
sep.back() = ':';
return sep;
}
std::string MarkDownColumn::invalid() const {
std::string sep(static_cast<size_t>(mWidth), ' ');
sep.front() = '|';
sep[sep.size() - 2] = '-';
return sep;
}
std::string MarkDownColumn::value() const {
std::stringstream ss;
auto width = mWidth - 2 - static_cast<int>(mSuffix.size());
ss << '|' << Number(width, mPrecision, mValue) << mSuffix << ' ';
return ss.str();
}
// Formats any text as markdown code, escaping backticks.
MarkDownCode::MarkDownCode(std::string const& what) {
mWhat.reserve(what.size() + 2);
mWhat.push_back('`');
for (char c : what) {
mWhat.push_back(c);
if ('`' == c) {
mWhat.push_back('`');
}
}
mWhat.push_back('`');
}
std::ostream& MarkDownCode::write(std::ostream& os) const {
return os << mWhat;
}
std::ostream& operator<<(std::ostream& os, MarkDownCode const& mdCode) {
return mdCode.write(os);
}
} // namespace fmt
} // namespace detail
// provide implementation here so it's only generated once
Config::Config() = default;
Config::~Config() = default;
Config& Config::operator=(Config const&) = default;
Config& Config::operator=(Config&&) = default;
Config::Config(Config const&) = default;
Config::Config(Config&&) noexcept = default;
// provide implementation here so it's only generated once
Result::~Result() = default;
Result& Result::operator=(Result const&) = default;
Result& Result::operator=(Result&&) = default;
Result::Result(Result const&) = default;
Result::Result(Result&&) noexcept = default;
namespace detail {
template <typename T>
inline constexpr typename std::underlying_type<T>::type u(T val) noexcept {
return static_cast<typename std::underlying_type<T>::type>(val);
}
} // namespace detail
// Result returned after a benchmark has finished. Can be used as a baseline for relative().
Result::Result(Config const& benchmarkConfig)
: mConfig(benchmarkConfig)
, mNameToMeasurements{detail::u(Result::Measure::_size)} {}
void Result::add(Clock::duration totalElapsed, uint64_t iters, detail::PerformanceCounters const& pc) {
using detail::d;
using detail::u;
double dIters = d(iters);
mNameToMeasurements[u(Result::Measure::iterations)].push_back(dIters);
mNameToMeasurements[u(Result::Measure::elapsed)].push_back(d(totalElapsed) / dIters);
if (pc.has().pageFaults) {
mNameToMeasurements[u(Result::Measure::pagefaults)].push_back(d(pc.val().pageFaults) / dIters);
}
if (pc.has().cpuCycles) {
mNameToMeasurements[u(Result::Measure::cpucycles)].push_back(d(pc.val().cpuCycles) / dIters);
}
if (pc.has().contextSwitches) {
mNameToMeasurements[u(Result::Measure::contextswitches)].push_back(d(pc.val().contextSwitches) / dIters);
}
if (pc.has().instructions) {
mNameToMeasurements[u(Result::Measure::instructions)].push_back(d(pc.val().instructions) / dIters);
}
if (pc.has().branchInstructions) {
double branchInstructions = 0.0;
// correcting branches: remove branch introduced by the while (...) loop for each iteration.
if (pc.val().branchInstructions > iters + 1U) {
branchInstructions = d(pc.val().branchInstructions - (iters + 1U));
}
mNameToMeasurements[u(Result::Measure::branchinstructions)].push_back(branchInstructions / dIters);
if (pc.has().branchMisses) {
// correcting branch misses
double branchMisses = d(pc.val().branchMisses);
if (branchMisses > branchInstructions) {
// can't have branch misses when there were branches...
branchMisses = branchInstructions;
}
// assuming at least one missed branch for the loop
branchMisses -= 1.0;
if (branchMisses < 1.0) {
branchMisses = 1.0;
}
mNameToMeasurements[u(Result::Measure::branchmisses)].push_back(branchMisses / dIters);
}
}
}
Config const& Result::config() const noexcept {
return mConfig;
}
inline double calcMedian(std::vector<double>& data) {
if (data.empty()) {
return 0.0;
}
std::sort(data.begin(), data.end());
auto midIdx = data.size() / 2U;
if (1U == (data.size() & 1U)) {
return data[midIdx];
}
return (data[midIdx - 1U] + data[midIdx]) / 2U;
}
double Result::median(Measure m) const {
// create a copy so we can sort
auto data = mNameToMeasurements[detail::u(m)];
return calcMedian(data);
}
double Result::average(Measure m) const {
using detail::d;
auto const& data = mNameToMeasurements[detail::u(m)];
if (data.empty()) {
return 0.0;
}
// create a copy so we can sort
return sum(m) / d(data.size());
}
double Result::medianAbsolutePercentError(Measure m) const {
// create copy
auto data = mNameToMeasurements[detail::u(m)];
// calculates MdAPE which is the median of percentage error
// see https://www.spiderfinancial.com/support/documentation/numxl/reference-manual/forecasting-performance/mdape
auto med = calcMedian(data);
// transform the data to absolute error
for (auto& x : data) {
x = (x - med) / x;
if (x < 0) {
x = -x;
}
}
return calcMedian(data);
}
double Result::sum(Measure m) const noexcept {
auto const& data = mNameToMeasurements[detail::u(m)];
return std::accumulate(data.begin(), data.end(), 0.0);
}
double Result::sumProduct(Measure m1, Measure m2) const noexcept {
auto const& data1 = mNameToMeasurements[detail::u(m1)];
auto const& data2 = mNameToMeasurements[detail::u(m2)];
if (data1.size() != data2.size()) {
return 0.0;
}
double result = 0.0;
for (size_t i = 0, s = data1.size(); i != s; ++i) {
result += data1[i] * data2[i];
}
return result;
}
bool Result::has(Measure m) const noexcept {
return !mNameToMeasurements[detail::u(m)].empty();
}
double Result::get(size_t idx, Measure m) const {
auto const& data = mNameToMeasurements[detail::u(m)];
return data.at(idx);
}
bool Result::empty() const noexcept {
return 0U == size();
}
size_t Result::size() const noexcept {
auto const& data = mNameToMeasurements[detail::u(Measure::elapsed)];
return data.size();
}
double Result::minimum(Measure m) const noexcept {
auto const& data = mNameToMeasurements[detail::u(m)];
if (data.empty()) {
return 0.0;
}
// here its save to assume that at least one element is there
return *std::min_element(data.begin(), data.end());
}
double Result::maximum(Measure m) const noexcept {
auto const& data = mNameToMeasurements[detail::u(m)];
if (data.empty()) {
return 0.0;
}
// here its save to assume that at least one element is there
return *std::max_element(data.begin(), data.end());
}
Result::Measure Result::fromString(std::string const& str) {
if (str == "elapsed") {
return Measure::elapsed;
} else if (str == "iterations") {
return Measure::iterations;
} else if (str == "pagefaults") {
return Measure::pagefaults;
} else if (str == "cpucycles") {
return Measure::cpucycles;
} else if (str == "contextswitches") {
return Measure::contextswitches;
} else if (str == "instructions") {
return Measure::instructions;
} else if (str == "branchinstructions") {
return Measure::branchinstructions;
} else if (str == "branchmisses") {
return Measure::branchmisses;
} else {
// not found, return _size
return Measure::_size;
}
}
// Configuration of a microbenchmark.
Bench::Bench() {
mConfig.mOut = &std::cout;
}
Bench::Bench(Bench&&) = default;
Bench& Bench::operator=(Bench&&) = default;
Bench::Bench(Bench const&) = default;
Bench& Bench::operator=(Bench const&) = default;
Bench::~Bench() noexcept = default;
double Bench::batch() const noexcept {
return mConfig.mBatch;
}
double Bench::complexityN() const noexcept {
return mConfig.mComplexityN;
}
// Set a baseline to compare it to. 100% it is exactly as fast as the baseline, >100% means it is faster than the baseline, <100%
// means it is slower than the baseline.
Bench& Bench::relative(bool isRelativeEnabled) noexcept {
mConfig.mIsRelative = isRelativeEnabled;
return *this;
}
bool Bench::relative() const noexcept {
return mConfig.mIsRelative;
}
Bench& Bench::performanceCounters(bool showPerformanceCounters) noexcept {
mConfig.mShowPerformanceCounters = showPerformanceCounters;
return *this;
}
bool Bench::performanceCounters() const noexcept {
return mConfig.mShowPerformanceCounters;
}
// Operation unit. Defaults to "op", could be e.g. "byte" for string processing.
// If u differs from currently set unit, the stored results will be cleared.
// Use singular (byte, not bytes).
Bench& Bench::unit(char const* u) {
if (u != mConfig.mUnit) {
mResults.clear();
}
mConfig.mUnit = u;
return *this;
}
Bench& Bench::unit(std::string const& u) {
return unit(u.c_str());
}
std::string const& Bench::unit() const noexcept {
return mConfig.mUnit;
}
Bench& Bench::timeUnit(std::chrono::duration<double> const& tu, std::string const& tuName) {
mConfig.mTimeUnit = tu;
mConfig.mTimeUnitName = tuName;
return *this;
}
std::string const& Bench::timeUnitName() const noexcept {
return mConfig.mTimeUnitName;
}
std::chrono::duration<double> const& Bench::timeUnit() const noexcept {
return mConfig.mTimeUnit;
}
// If benchmarkTitle differs from currently set title, the stored results will be cleared.
Bench& Bench::title(const char* benchmarkTitle) {
if (benchmarkTitle != mConfig.mBenchmarkTitle) {
mResults.clear();
}
mConfig.mBenchmarkTitle = benchmarkTitle;
return *this;
}
Bench& Bench::title(std::string const& benchmarkTitle) {
if (benchmarkTitle != mConfig.mBenchmarkTitle) {
mResults.clear();
}
mConfig.mBenchmarkTitle = benchmarkTitle;
return *this;
}
std::string const& Bench::title() const noexcept {
return mConfig.mBenchmarkTitle;
}
Bench& Bench::name(const char* benchmarkName) {
mConfig.mBenchmarkName = benchmarkName;
return *this;
}
Bench& Bench::name(std::string const& benchmarkName) {
mConfig.mBenchmarkName = benchmarkName;
return *this;
}
std::string const& Bench::name() const noexcept {
return mConfig.mBenchmarkName;
}
// Number of epochs to evaluate. The reported result will be the median of evaluation of each epoch.
Bench& Bench::epochs(size_t numEpochs) noexcept {
mConfig.mNumEpochs = numEpochs;
return *this;
}
size_t Bench::epochs() const noexcept {
return mConfig.mNumEpochs;
}
// Desired evaluation time is a multiple of clock resolution. Default is to be 1000 times above this measurement precision.
Bench& Bench::clockResolutionMultiple(size_t multiple) noexcept {
mConfig.mClockResolutionMultiple = multiple;
return *this;
}
size_t Bench::clockResolutionMultiple() const noexcept {
return mConfig.mClockResolutionMultiple;
}
// Sets the maximum time each epoch should take. Default is 100ms.
Bench& Bench::maxEpochTime(std::chrono::nanoseconds t) noexcept {
mConfig.mMaxEpochTime = t;
return *this;
}
std::chrono::nanoseconds Bench::maxEpochTime() const noexcept {
return mConfig.mMaxEpochTime;
}
// Sets the maximum time each epoch should take. Default is 100ms.
Bench& Bench::minEpochTime(std::chrono::nanoseconds t) noexcept {
mConfig.mMinEpochTime = t;
return *this;
}
std::chrono::nanoseconds Bench::minEpochTime() const noexcept {
return mConfig.mMinEpochTime;
}
Bench& Bench::minEpochIterations(uint64_t numIters) noexcept {
mConfig.mMinEpochIterations = (numIters == 0) ? 1 : numIters;
return *this;
}
uint64_t Bench::minEpochIterations() const noexcept {
return mConfig.mMinEpochIterations;
}
Bench& Bench::epochIterations(uint64_t numIters) noexcept {
mConfig.mEpochIterations = numIters;
return *this;
}
uint64_t Bench::epochIterations() const noexcept {
return mConfig.mEpochIterations;
}
Bench& Bench::warmup(uint64_t numWarmupIters) noexcept {
mConfig.mWarmup = numWarmupIters;
return *this;
}
uint64_t Bench::warmup() const noexcept {
return mConfig.mWarmup;
}
Bench& Bench::config(Config const& benchmarkConfig) {
mConfig = benchmarkConfig;
return *this;
}
Config const& Bench::config() const noexcept {
return mConfig;
}
Bench& Bench::output(std::ostream* outstream) noexcept {
mConfig.mOut = outstream;
return *this;
}
ANKERL_NANOBENCH(NODISCARD) std::ostream* Bench::output() const noexcept {
return mConfig.mOut;
}
std::vector<Result> const& Bench::results() const noexcept {
return mResults;
}
Bench& Bench::render(char const* templateContent, std::ostream& os) {
::ankerl::nanobench::render(templateContent, *this, os);
return *this;
}
Bench& Bench::render(std::string const& templateContent, std::ostream& os) {
::ankerl::nanobench::render(templateContent, *this, os);
return *this;
}
std::vector<BigO> Bench::complexityBigO() const {
std::vector<BigO> bigOs;
auto rangeMeasure = BigO::collectRangeMeasure(mResults);
bigOs.emplace_back("O(1)", rangeMeasure, [](double) {
return 1.0;
});
bigOs.emplace_back("O(n)", rangeMeasure, [](double n) {
return n;
});
bigOs.emplace_back("O(log n)", rangeMeasure, [](double n) {
return std::log2(n);
});
bigOs.emplace_back("O(n log n)", rangeMeasure, [](double n) {
return n * std::log2(n);
});
bigOs.emplace_back("O(n^2)", rangeMeasure, [](double n) {
return n * n;
});
bigOs.emplace_back("O(n^3)", rangeMeasure, [](double n) {
return n * n * n;
});
std::sort(bigOs.begin(), bigOs.end());
return bigOs;
}
Rng::Rng()
: mX(0)
, mY(0) {
std::random_device rd;
std::uniform_int_distribution<uint64_t> dist;
do {
mX = dist(rd);
mY = dist(rd);
} while (mX == 0 && mY == 0);
}
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
uint64_t splitMix64(uint64_t& state) noexcept {
uint64_t z = (state += UINT64_C(0x9e3779b97f4a7c15));
z = (z ^ (z >> 30U)) * UINT64_C(0xbf58476d1ce4e5b9);
z = (z ^ (z >> 27U)) * UINT64_C(0x94d049bb133111eb);
return z ^ (z >> 31U);
}
// Seeded as described in romu paper (update april 2020)
Rng::Rng(uint64_t seed) noexcept
: mX(splitMix64(seed))
, mY(splitMix64(seed)) {
for (size_t i = 0; i < 10; ++i) {
operator()();
}
}
// only internally used to copy the RNG.
Rng::Rng(uint64_t x, uint64_t y) noexcept
: mX(x)
, mY(y) {}
Rng Rng::copy() const noexcept {
return Rng{mX, mY};
}
Rng::Rng(std::vector<uint64_t> const& data)
: mX(0)
, mY(0) {
if (data.size() != 2) {
throw std::runtime_error("ankerl::nanobench::Rng::Rng: needed exactly 2 entries in data, but got " +
detail::fmt::to_s(data.size()));
}
mX = data[0];
mY = data[1];
}
std::vector<uint64_t> Rng::state() const {
std::vector<uint64_t> data(2);
data[0] = mX;
data[1] = mY;
return data;
}
BigO::RangeMeasure BigO::collectRangeMeasure(std::vector<Result> const& results) {
BigO::RangeMeasure rangeMeasure;
for (auto const& result : results) {
if (result.config().mComplexityN > 0.0) {
rangeMeasure.emplace_back(result.config().mComplexityN, result.median(Result::Measure::elapsed));
}
}
return rangeMeasure;
}
BigO::BigO(std::string const& bigOName, RangeMeasure const& rangeMeasure)
: mName(bigOName) {
// estimate the constant factor
double sumRangeMeasure = 0.0;
double sumRangeRange = 0.0;
for (size_t i = 0; i < rangeMeasure.size(); ++i) {
sumRangeMeasure += rangeMeasure[i].first * rangeMeasure[i].second;
sumRangeRange += rangeMeasure[i].first * rangeMeasure[i].first;
}
mConstant = sumRangeMeasure / sumRangeRange;
// calculate root mean square
double err = 0.0;
double sumMeasure = 0.0;
for (size_t i = 0; i < rangeMeasure.size(); ++i) {
auto diff = mConstant * rangeMeasure[i].first - rangeMeasure[i].second;
err += diff * diff;
sumMeasure += rangeMeasure[i].second;
}
auto n = static_cast<double>(rangeMeasure.size());
auto mean = sumMeasure / n;
mNormalizedRootMeanSquare = std::sqrt(err / n) / mean;
}
BigO::BigO(const char* bigOName, RangeMeasure const& rangeMeasure)
: BigO(std::string(bigOName), rangeMeasure) {}
std::string const& BigO::name() const noexcept {
return mName;
}
double BigO::constant() const noexcept {
return mConstant;
}
double BigO::normalizedRootMeanSquare() const noexcept {
return mNormalizedRootMeanSquare;
}
bool BigO::operator<(BigO const& other) const noexcept {
return std::tie(mNormalizedRootMeanSquare, mName) < std::tie(other.mNormalizedRootMeanSquare, other.mName);
}
std::ostream& operator<<(std::ostream& os, BigO const& bigO) {
return os << bigO.constant() << " * " << bigO.name() << ", rms=" << bigO.normalizedRootMeanSquare();
}
std::ostream& operator<<(std::ostream& os, std::vector<ankerl::nanobench::BigO> const& bigOs) {
detail::fmt::StreamStateRestorer restorer(os);
os << std::endl << "| coefficient | err% | complexity" << std::endl << "|--------------:|-------:|------------" << std::endl;
for (auto const& bigO : bigOs) {
os << "|" << std::setw(14) << std::setprecision(7) << std::scientific << bigO.constant() << " ";
os << "|" << detail::fmt::Number(6, 1, bigO.normalizedRootMeanSquare() * 100.0) << "% ";
os << "| " << bigO.name();
os << std::endl;
}
return os;
}
} // namespace nanobench
} // namespace ankerl
#endif // ANKERL_NANOBENCH_IMPLEMENT
#endif // ANKERL_NANOBENCH_H_INCLUDED
|