1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
// Copyright (c) 2016-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <bench/bench.h>
#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
#include <crypto/sha3.h>
#include <crypto/sha512.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <random.h>
#include <uint256.h>
/* Number of bytes to hash per iteration */
static const uint64_t BUFFER_SIZE = 1000*1000;
static void RIPEMD160(benchmark::Bench& bench)
{
uint8_t hash[CRIPEMD160::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CRIPEMD160().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SHA1(benchmark::Bench& bench)
{
uint8_t hash[CSHA1::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA1().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SHA256(benchmark::Bench& bench)
{
uint8_t hash[CSHA256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SHA3_256_1M(benchmark::Bench& bench)
{
uint8_t hash[SHA3_256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
SHA3_256().Write(in).Finalize(hash);
});
}
static void SHA256_32b(benchmark::Bench& bench)
{
std::vector<uint8_t> in(32,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256()
.Write(in.data(), in.size())
.Finalize(in.data());
});
}
static void SHA256D64_1024(benchmark::Bench& bench)
{
std::vector<uint8_t> in(64 * 1024, 0);
bench.batch(in.size()).unit("byte").run([&] {
SHA256D64(in.data(), in.data(), 1024);
});
}
static void SHA512(benchmark::Bench& bench)
{
uint8_t hash[CSHA512::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA512().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SipHash_32b(benchmark::Bench& bench)
{
uint256 x;
uint64_t k1 = 0;
bench.run([&] {
*((uint64_t*)x.begin()) = SipHashUint256(0, ++k1, x);
});
}
static void FastRandom_32bit(benchmark::Bench& bench)
{
FastRandomContext rng(true);
bench.run([&] {
rng.rand32();
});
}
static void FastRandom_1bit(benchmark::Bench& bench)
{
FastRandomContext rng(true);
bench.run([&] {
rng.randbool();
});
}
BENCHMARK(RIPEMD160);
BENCHMARK(SHA1);
BENCHMARK(SHA256);
BENCHMARK(SHA512);
BENCHMARK(SHA3_256_1M);
BENCHMARK(SHA256_32b);
BENCHMARK(SipHash_32b);
BENCHMARK(SHA256D64_1024);
BENCHMARK(FastRandom_32bit);
BENCHMARK(FastRandom_1bit);
|