aboutsummaryrefslogtreecommitdiff
path: root/src/bench/crypto_hash.cpp
blob: 7d907eaf10bde8653a39e1f5fc1ab0c8fb186f6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// Copyright (c) 2016-2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <iostream>

#include <bench/bench.h>
#include <bloom.h>
#include <hash.h>
#include <random.h>
#include <uint256.h>
#include <utiltime.h>
#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
#include <crypto/sha512.h>

/* Number of bytes to hash per iteration */
static const uint64_t BUFFER_SIZE = 1000*1000;

static void RIPEMD160(benchmark::State& state)
{
    uint8_t hash[CRIPEMD160::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    while (state.KeepRunning())
        CRIPEMD160().Write(in.data(), in.size()).Finalize(hash);
}

static void SHA1(benchmark::State& state)
{
    uint8_t hash[CSHA1::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    while (state.KeepRunning())
        CSHA1().Write(in.data(), in.size()).Finalize(hash);
}

static void SHA256(benchmark::State& state)
{
    uint8_t hash[CSHA256::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    while (state.KeepRunning())
        CSHA256().Write(in.data(), in.size()).Finalize(hash);
}

static void SHA256_32b(benchmark::State& state)
{
    std::vector<uint8_t> in(32,0);
    while (state.KeepRunning()) {
        CSHA256()
            .Write(in.data(), in.size())
            .Finalize(in.data());
    }
}

static void SHA256D64_1024(benchmark::State& state)
{
    std::vector<uint8_t> in(64 * 1024, 0);
    while (state.KeepRunning()) {
        SHA256D64(in.data(), in.data(), 1024);
    }
}

static void SHA512(benchmark::State& state)
{
    uint8_t hash[CSHA512::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    while (state.KeepRunning())
        CSHA512().Write(in.data(), in.size()).Finalize(hash);
}

static void SipHash_32b(benchmark::State& state)
{
    uint256 x;
    uint64_t k1 = 0;
    while (state.KeepRunning()) {
        *((uint64_t*)x.begin()) = SipHashUint256(0, ++k1, x);
    }
}

static void FastRandom_32bit(benchmark::State& state)
{
    FastRandomContext rng(true);
    uint32_t x = 0;
    while (state.KeepRunning()) {
        x += rng.rand32();
    }
}

static void FastRandom_1bit(benchmark::State& state)
{
    FastRandomContext rng(true);
    uint32_t x = 0;
    while (state.KeepRunning()) {
        x += rng.randbool();
    }
}

BENCHMARK(RIPEMD160, 440);
BENCHMARK(SHA1, 570);
BENCHMARK(SHA256, 340);
BENCHMARK(SHA512, 330);

BENCHMARK(SHA256_32b, 4700 * 1000);
BENCHMARK(SipHash_32b, 40 * 1000 * 1000);
BENCHMARK(SHA256D64_1024, 7400);
BENCHMARK(FastRandom_32bit, 110 * 1000 * 1000);
BENCHMARK(FastRandom_1bit, 440 * 1000 * 1000);