1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
#!/usr/bin/env python3
# Copyright (c) 2014-2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
# Test fee estimation code
#
from collections import OrderedDict
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
# Construct 2 trivial P2SH's and the ScriptSigs that spend them
# So we can create many many transactions without needing to spend
# time signing.
P2SH_1 = "2MySexEGVzZpRgNQ1JdjdP5bRETznm3roQ2" # P2SH of "OP_1 OP_DROP"
P2SH_2 = "2NBdpwq8Aoo1EEKEXPNrKvr5xQr3M9UfcZA" # P2SH of "OP_2 OP_DROP"
# Associated ScriptSig's to spend satisfy P2SH_1 and P2SH_2
# 4 bytes of OP_TRUE and push 2-byte redeem script of "OP_1 OP_DROP" or "OP_2 OP_DROP"
SCRIPT_SIG = ["0451025175", "0451025275"]
def small_txpuzzle_randfee(from_node, conflist, unconflist, amount, min_fee, fee_increment):
'''
Create and send a transaction with a random fee.
The transaction pays to a trivial P2SH script, and assumes that its inputs
are of the same form.
The function takes a list of confirmed outputs and unconfirmed outputs
and attempts to use the confirmed list first for its inputs.
It adds the newly created outputs to the unconfirmed list.
Returns (raw transaction, fee)
'''
# It's best to exponentially distribute our random fees
# because the buckets are exponentially spaced.
# Exponentially distributed from 1-128 * fee_increment
rand_fee = float(fee_increment)*(1.1892**random.randint(0,28))
# Total fee ranges from min_fee to min_fee + 127*fee_increment
fee = min_fee - fee_increment + satoshi_round(rand_fee)
inputs = []
total_in = Decimal("0.00000000")
while total_in <= (amount + fee) and len(conflist) > 0:
t = conflist.pop(0)
total_in += t["amount"]
inputs.append({ "txid" : t["txid"], "vout" : t["vout"]} )
if total_in <= amount + fee:
while total_in <= (amount + fee) and len(unconflist) > 0:
t = unconflist.pop(0)
total_in += t["amount"]
inputs.append({ "txid" : t["txid"], "vout" : t["vout"]} )
if total_in <= amount + fee:
raise RuntimeError("Insufficient funds: need %d, have %d"%(amount+fee, total_in))
outputs = {}
outputs = OrderedDict([(P2SH_1, total_in - amount - fee),
(P2SH_2, amount)])
rawtx = from_node.createrawtransaction(inputs, outputs)
# createrawtransaction constructs a transaction that is ready to be signed.
# These transactions don't need to be signed, but we still have to insert the ScriptSig
# that will satisfy the ScriptPubKey.
completetx = rawtx[0:10]
inputnum = 0
for inp in inputs:
completetx += rawtx[10+82*inputnum:82+82*inputnum]
completetx += SCRIPT_SIG[inp["vout"]]
completetx += rawtx[84+82*inputnum:92+82*inputnum]
inputnum += 1
completetx += rawtx[10+82*inputnum:]
txid = from_node.sendrawtransaction(completetx, True)
unconflist.append({ "txid" : txid, "vout" : 0 , "amount" : total_in - amount - fee})
unconflist.append({ "txid" : txid, "vout" : 1 , "amount" : amount})
return (completetx, fee)
def split_inputs(from_node, txins, txouts, initial_split = False):
'''
We need to generate a lot of very small inputs so we can generate a ton of transactions
and they will have low priority.
This function takes an input from txins, and creates and sends a transaction
which splits the value into 2 outputs which are appended to txouts.
'''
prevtxout = txins.pop()
inputs = []
inputs.append({ "txid" : prevtxout["txid"], "vout" : prevtxout["vout"] })
half_change = satoshi_round(prevtxout["amount"]/2)
rem_change = prevtxout["amount"] - half_change - Decimal("0.00001000")
outputs = OrderedDict([(P2SH_1, half_change), (P2SH_2, rem_change)])
rawtx = from_node.createrawtransaction(inputs, outputs)
# If this is the initial split we actually need to sign the transaction
# Otherwise we just need to insert the property ScriptSig
if (initial_split) :
completetx = from_node.signrawtransaction(rawtx)["hex"]
else :
completetx = rawtx[0:82] + SCRIPT_SIG[prevtxout["vout"]] + rawtx[84:]
txid = from_node.sendrawtransaction(completetx, True)
txouts.append({ "txid" : txid, "vout" : 0 , "amount" : half_change})
txouts.append({ "txid" : txid, "vout" : 1 , "amount" : rem_change})
def check_estimates(node, fees_seen, max_invalid, print_estimates = True):
'''
This function calls estimatefee and verifies that the estimates
meet certain invariants.
'''
all_estimates = [ node.estimatefee(i) for i in range(1,26) ]
if print_estimates:
print([str(all_estimates[e-1]) for e in [1,2,3,6,15,25]])
delta = 1.0e-6 # account for rounding error
last_e = max(fees_seen)
for e in [x for x in all_estimates if x >= 0]:
# Estimates should be within the bounds of what transactions fees actually were:
if float(e)+delta < min(fees_seen) or float(e)-delta > max(fees_seen):
raise AssertionError("Estimated fee (%f) out of range (%f,%f)"
%(float(e), min(fees_seen), max(fees_seen)))
# Estimates should be monotonically decreasing
if float(e)-delta > last_e:
raise AssertionError("Estimated fee (%f) larger than last fee (%f) for lower number of confirms"
%(float(e),float(last_e)))
last_e = e
valid_estimate = False
invalid_estimates = 0
for i,e in enumerate(all_estimates): # estimate is for i+1
if e >= 0:
valid_estimate = True
# estimatesmartfee should return the same result
assert_equal(node.estimatesmartfee(i+1)["feerate"], e)
else:
invalid_estimates += 1
# estimatesmartfee should still be valid
approx_estimate = node.estimatesmartfee(i+1)["feerate"]
answer_found = node.estimatesmartfee(i+1)["blocks"]
assert(approx_estimate > 0)
assert(answer_found > i+1)
# Once we're at a high enough confirmation count that we can give an estimate
# We should have estimates for all higher confirmation counts
if valid_estimate:
raise AssertionError("Invalid estimate appears at higher confirm count than valid estimate")
# Check on the expected number of different confirmation counts
# that we might not have valid estimates for
if invalid_estimates > max_invalid:
raise AssertionError("More than (%d) invalid estimates"%(max_invalid))
return all_estimates
class EstimateFeeTest(BitcoinTestFramework):
def __init__(self):
super().__init__()
self.num_nodes = 3
self.setup_clean_chain = False
def setup_network(self):
'''
We'll setup the network to have 3 nodes that all mine with different parameters.
But first we need to use one node to create a lot of small low priority outputs
which we will use to generate our transactions.
'''
self.nodes = []
# Use node0 to mine blocks for input splitting
self.nodes.append(start_node(0, self.options.tmpdir, ["-maxorphantx=1000",
"-whitelist=127.0.0.1"]))
print("This test is time consuming, please be patient")
print("Splitting inputs to small size so we can generate low priority tx's")
self.txouts = []
self.txouts2 = []
# Split a coinbase into two transaction puzzle outputs
split_inputs(self.nodes[0], self.nodes[0].listunspent(0), self.txouts, True)
# Mine
while (len(self.nodes[0].getrawmempool()) > 0):
self.nodes[0].generate(1)
# Repeatedly split those 2 outputs, doubling twice for each rep
# Use txouts to monitor the available utxo, since these won't be tracked in wallet
reps = 0
while (reps < 5):
#Double txouts to txouts2
while (len(self.txouts)>0):
split_inputs(self.nodes[0], self.txouts, self.txouts2)
while (len(self.nodes[0].getrawmempool()) > 0):
self.nodes[0].generate(1)
#Double txouts2 to txouts
while (len(self.txouts2)>0):
split_inputs(self.nodes[0], self.txouts2, self.txouts)
while (len(self.nodes[0].getrawmempool()) > 0):
self.nodes[0].generate(1)
reps += 1
print("Finished splitting")
# Now we can connect the other nodes, didn't want to connect them earlier
# so the estimates would not be affected by the splitting transactions
# Node1 mines small blocks but that are bigger than the expected transaction rate,
# and allows free transactions.
# NOTE: the CreateNewBlock code starts counting block size at 1,000 bytes,
# (17k is room enough for 110 or so transactions)
self.nodes.append(start_node(1, self.options.tmpdir,
["-blockprioritysize=1500", "-blockmaxsize=17000",
"-maxorphantx=1000", "-debug=estimatefee"]))
connect_nodes(self.nodes[1], 0)
# Node2 is a stingy miner, that
# produces too small blocks (room for only 55 or so transactions)
node2args = ["-blockprioritysize=0", "-blockmaxsize=8000", "-maxorphantx=1000"]
self.nodes.append(start_node(2, self.options.tmpdir, node2args))
connect_nodes(self.nodes[0], 2)
connect_nodes(self.nodes[2], 1)
self.is_network_split = False
self.sync_all()
def transact_and_mine(self, numblocks, mining_node):
min_fee = Decimal("0.00001")
# We will now mine numblocks blocks generating on average 100 transactions between each block
# We shuffle our confirmed txout set before each set of transactions
# small_txpuzzle_randfee will use the transactions that have inputs already in the chain when possible
# resorting to tx's that depend on the mempool when those run out
for i in range(numblocks):
random.shuffle(self.confutxo)
for j in range(random.randrange(100-50,100+50)):
from_index = random.randint(1,2)
(txhex, fee) = small_txpuzzle_randfee(self.nodes[from_index], self.confutxo,
self.memutxo, Decimal("0.005"), min_fee, min_fee)
tx_kbytes = (len(txhex) // 2) / 1000.0
self.fees_per_kb.append(float(fee)/tx_kbytes)
sync_mempools(self.nodes[0:3], wait=.1)
mined = mining_node.getblock(mining_node.generate(1)[0],True)["tx"]
sync_blocks(self.nodes[0:3], wait=.1)
# update which txouts are confirmed
newmem = []
for utx in self.memutxo:
if utx["txid"] in mined:
self.confutxo.append(utx)
else:
newmem.append(utx)
self.memutxo = newmem
def run_test(self):
self.fees_per_kb = []
self.memutxo = []
self.confutxo = self.txouts # Start with the set of confirmed txouts after splitting
print("Will output estimates for 1/2/3/6/15/25 blocks")
for i in range(2):
print("Creating transactions and mining them with a block size that can't keep up")
# Create transactions and mine 10 small blocks with node 2, but create txs faster than we can mine
self.transact_and_mine(10, self.nodes[2])
check_estimates(self.nodes[1], self.fees_per_kb, 14)
print("Creating transactions and mining them at a block size that is just big enough")
# Generate transactions while mining 10 more blocks, this time with node1
# which mines blocks with capacity just above the rate that transactions are being created
self.transact_and_mine(10, self.nodes[1])
check_estimates(self.nodes[1], self.fees_per_kb, 2)
# Finish by mining a normal-sized block:
while len(self.nodes[1].getrawmempool()) > 0:
self.nodes[1].generate(1)
sync_blocks(self.nodes[0:3], wait=.1)
print("Final estimates after emptying mempools")
check_estimates(self.nodes[1], self.fees_per_kb, 2)
if __name__ == '__main__':
EstimateFeeTest().main()
|