aboutsummaryrefslogtreecommitdiff
path: root/qa/rpc-tests/prioritise_transaction.py
blob: 4a79d38da0e7d8aca4fd6e6edb39db3407c63a95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/env python2
# Copyright (c) 2015 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.

#
# Test PrioritiseTransaction code
#

from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *

COIN = 100000000

class PrioritiseTransactionTest(BitcoinTestFramework):

    def __init__(self):
        self.txouts = gen_return_txouts()

    def setup_chain(self):
        print("Initializing test directory "+self.options.tmpdir)
        initialize_chain_clean(self.options.tmpdir, 1)

    def setup_network(self):
        self.nodes = []
        self.is_network_split = False

        self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-printpriority=1"]))
        self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']

    def run_test(self):
        utxos = create_confirmed_utxos(self.relayfee, self.nodes[0], 90)
        base_fee = self.relayfee*100 # our transactions are smaller than 100kb
        txids = []

        # Create 3 batches of transactions at 3 different fee rate levels
        for i in xrange(3):
            txids.append([])
            txids[i] = create_lots_of_big_transactions(self.nodes[0], self.txouts, utxos[30*i:30*i+30], (i+1)*base_fee)

        # add a fee delta to something in the cheapest bucket and make sure it gets mined
        # also check that a different entry in the cheapest bucket is NOT mined (lower
        # the priority to ensure its not mined due to priority)
        self.nodes[0].prioritisetransaction(txids[0][0], 0, int(3*base_fee*COIN))
        self.nodes[0].prioritisetransaction(txids[0][1], -1e15, 0)

        self.nodes[0].generate(1)

        mempool = self.nodes[0].getrawmempool()
        print "Assert that prioritised transasction was mined"
        assert(txids[0][0] not in mempool)
        assert(txids[0][1] in mempool)

        high_fee_tx = None
        for x in txids[2]:
            if x not in mempool:
                high_fee_tx = x

        # Something high-fee should have been mined!
        assert(high_fee_tx != None)

        # Add a prioritisation before a tx is in the mempool (de-prioritising a
        # high-fee transaction).
        self.nodes[0].prioritisetransaction(high_fee_tx, -1e15, -int(2*base_fee*COIN))

        # Add everything back to mempool
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # Check to make sure our high fee rate tx is back in the mempool
        mempool = self.nodes[0].getrawmempool()
        assert(high_fee_tx in mempool)

        # Now verify the high feerate transaction isn't mined.
        self.nodes[0].generate(5)

        # High fee transaction should not have been mined, but other high fee rate
        # transactions should have been.
        mempool = self.nodes[0].getrawmempool()
        print "Assert that de-prioritised transaction is still in mempool"
        assert(high_fee_tx in mempool)
        for x in txids[2]:
            if (x != high_fee_tx):
                assert(x not in mempool)

        # Create a free, low priority transaction.  Should be rejected.
        utxo_list = self.nodes[0].listunspent()
        assert(len(utxo_list) > 0)
        utxo = utxo_list[0]

        inputs = []
        outputs = {}
        inputs.append({"txid" : utxo["txid"], "vout" : utxo["vout"]})
        outputs[self.nodes[0].getnewaddress()] = utxo["amount"] - self.relayfee
        raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
        tx_hex = self.nodes[0].signrawtransaction(raw_tx)["hex"]
        txid = self.nodes[0].sendrawtransaction(tx_hex)

        # A tx that spends an in-mempool tx has 0 priority, so we can use it to
        # test the effect of using prioritise transaction for mempool acceptance
        inputs = []
        inputs.append({"txid": txid, "vout": 0})
        outputs = {}
        outputs[self.nodes[0].getnewaddress()] = utxo["amount"] - self.relayfee
        raw_tx2 = self.nodes[0].createrawtransaction(inputs, outputs)
        tx2_hex = self.nodes[0].signrawtransaction(raw_tx2)["hex"]
        tx2_id = self.nodes[0].decoderawtransaction(tx2_hex)["txid"]

        try:
            self.nodes[0].sendrawtransaction(tx2_hex)
        except JSONRPCException as exp:
            assert_equal(exp.error['code'], -26) # insufficient fee
            assert(tx2_id not in self.nodes[0].getrawmempool())
        else:
            assert(False)

        # This is a less than 1000-byte transaction, so just set the fee
        # to be the minimum for a 1000 byte transaction and check that it is
        # accepted.
        self.nodes[0].prioritisetransaction(tx2_id, 0, int(self.relayfee*COIN))

        print "Assert that prioritised free transaction is accepted to mempool"
        assert_equal(self.nodes[0].sendrawtransaction(tx2_hex), tx2_id)
        assert(tx2_id in self.nodes[0].getrawmempool())

if __name__ == '__main__':
    PrioritiseTransactionTest().main()