aboutsummaryrefslogtreecommitdiff
path: root/qa/rpc-tests/prioritise_transaction.py
blob: b7459c80cbdfc748d26e2d10cf2a6ee1a374e97f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python3
# Copyright (c) 2015-2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.

#
# Test PrioritiseTransaction code
#

from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
from test_framework.mininode import COIN, MAX_BLOCK_BASE_SIZE

class PrioritiseTransactionTest(BitcoinTestFramework):

    def __init__(self):
        super().__init__()
        self.setup_clean_chain = True
        self.num_nodes = 1

        self.txouts = gen_return_txouts()

    def setup_network(self):
        self.nodes = []
        self.is_network_split = False

        self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-printpriority=1"]))
        self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']

    def run_test(self):
        utxo_count = 90
        utxos = create_confirmed_utxos(self.relayfee, self.nodes[0], utxo_count)
        base_fee = self.relayfee*100 # our transactions are smaller than 100kb
        txids = []

        # Create 3 batches of transactions at 3 different fee rate levels
        range_size = utxo_count // 3
        for i in range(3):
            txids.append([])
            start_range = i * range_size
            end_range = start_range + range_size
            txids[i] = create_lots_of_big_transactions(self.nodes[0], self.txouts, utxos[start_range:end_range], end_range - start_range, (i+1)*base_fee)

        # Make sure that the size of each group of transactions exceeds
        # MAX_BLOCK_BASE_SIZE -- otherwise the test needs to be revised to create
        # more transactions.
        mempool = self.nodes[0].getrawmempool(True)
        sizes = [0, 0, 0]
        for i in range(3):
            for j in txids[i]:
                assert(j in mempool)
                sizes[i] += mempool[j]['size']
            assert(sizes[i] > MAX_BLOCK_BASE_SIZE) # Fail => raise utxo_count

        # add a fee delta to something in the cheapest bucket and make sure it gets mined
        # also check that a different entry in the cheapest bucket is NOT mined (lower
        # the priority to ensure its not mined due to priority)
        self.nodes[0].prioritisetransaction(txids[0][0], 0, int(3*base_fee*COIN))
        self.nodes[0].prioritisetransaction(txids[0][1], -1e15, 0)

        self.nodes[0].generate(1)

        mempool = self.nodes[0].getrawmempool()
        print("Assert that prioritised transaction was mined")
        assert(txids[0][0] not in mempool)
        assert(txids[0][1] in mempool)

        high_fee_tx = None
        for x in txids[2]:
            if x not in mempool:
                high_fee_tx = x

        # Something high-fee should have been mined!
        assert(high_fee_tx != None)

        # Add a prioritisation before a tx is in the mempool (de-prioritising a
        # high-fee transaction so that it's now low fee).
        self.nodes[0].prioritisetransaction(high_fee_tx, -1e15, -int(2*base_fee*COIN))

        # Add everything back to mempool
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # Check to make sure our high fee rate tx is back in the mempool
        mempool = self.nodes[0].getrawmempool()
        assert(high_fee_tx in mempool)

        # Now verify the modified-high feerate transaction isn't mined before
        # the other high fee transactions. Keep mining until our mempool has
        # decreased by all the high fee size that we calculated above.
        while (self.nodes[0].getmempoolinfo()['bytes'] > sizes[0] + sizes[1]):
            self.nodes[0].generate(1)

        # High fee transaction should not have been mined, but other high fee rate
        # transactions should have been.
        mempool = self.nodes[0].getrawmempool()
        print("Assert that de-prioritised transaction is still in mempool")
        assert(high_fee_tx in mempool)
        for x in txids[2]:
            if (x != high_fee_tx):
                assert(x not in mempool)

        # Create a free, low priority transaction.  Should be rejected.
        utxo_list = self.nodes[0].listunspent()
        assert(len(utxo_list) > 0)
        utxo = utxo_list[0]

        inputs = []
        outputs = {}
        inputs.append({"txid" : utxo["txid"], "vout" : utxo["vout"]})
        outputs[self.nodes[0].getnewaddress()] = utxo["amount"] - self.relayfee
        raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
        tx_hex = self.nodes[0].signrawtransaction(raw_tx)["hex"]
        txid = self.nodes[0].sendrawtransaction(tx_hex)

        # A tx that spends an in-mempool tx has 0 priority, so we can use it to
        # test the effect of using prioritise transaction for mempool acceptance
        inputs = []
        inputs.append({"txid": txid, "vout": 0})
        outputs = {}
        outputs[self.nodes[0].getnewaddress()] = utxo["amount"] - self.relayfee
        raw_tx2 = self.nodes[0].createrawtransaction(inputs, outputs)
        tx2_hex = self.nodes[0].signrawtransaction(raw_tx2)["hex"]
        tx2_id = self.nodes[0].decoderawtransaction(tx2_hex)["txid"]

        try:
            self.nodes[0].sendrawtransaction(tx2_hex)
        except JSONRPCException as exp:
            assert_equal(exp.error['code'], -26) # insufficient fee
            assert(tx2_id not in self.nodes[0].getrawmempool())
        else:
            assert(False)

        # This is a less than 1000-byte transaction, so just set the fee
        # to be the minimum for a 1000 byte transaction and check that it is
        # accepted.
        self.nodes[0].prioritisetransaction(tx2_id, 0, int(self.relayfee*COIN))

        print("Assert that prioritised free transaction is accepted to mempool")
        assert_equal(self.nodes[0].sendrawtransaction(tx2_hex), tx2_id)
        assert(tx2_id in self.nodes[0].getrawmempool())

if __name__ == '__main__':
    PrioritiseTransactionTest().main()