aboutsummaryrefslogtreecommitdiff
path: root/db/version_set.cc
blob: cd07346ea8a029bdc57dc9ca7339f79060369521 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "db/version_set.h"

#include <stdio.h>

#include <algorithm>

#include "db/filename.h"
#include "db/log_reader.h"
#include "db/log_writer.h"
#include "db/memtable.h"
#include "db/table_cache.h"
#include "leveldb/env.h"
#include "leveldb/table_builder.h"
#include "table/merger.h"
#include "table/two_level_iterator.h"
#include "util/coding.h"
#include "util/logging.h"

namespace leveldb {

static size_t TargetFileSize(const Options* options) {
  return options->max_file_size;
}

// Maximum bytes of overlaps in grandparent (i.e., level+2) before we
// stop building a single file in a level->level+1 compaction.
static int64_t MaxGrandParentOverlapBytes(const Options* options) {
  return 10 * TargetFileSize(options);
}

// Maximum number of bytes in all compacted files.  We avoid expanding
// the lower level file set of a compaction if it would make the
// total compaction cover more than this many bytes.
static int64_t ExpandedCompactionByteSizeLimit(const Options* options) {
  return 25 * TargetFileSize(options);
}

static double MaxBytesForLevel(const Options* options, int level) {
  // Note: the result for level zero is not really used since we set
  // the level-0 compaction threshold based on number of files.

  // Result for both level-0 and level-1
  double result = 10. * 1048576.0;
  while (level > 1) {
    result *= 10;
    level--;
  }
  return result;
}

static uint64_t MaxFileSizeForLevel(const Options* options, int level) {
  // We could vary per level to reduce number of files?
  return TargetFileSize(options);
}

static int64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
  int64_t sum = 0;
  for (size_t i = 0; i < files.size(); i++) {
    sum += files[i]->file_size;
  }
  return sum;
}

Version::~Version() {
  assert(refs_ == 0);

  // Remove from linked list
  prev_->next_ = next_;
  next_->prev_ = prev_;

  // Drop references to files
  for (int level = 0; level < config::kNumLevels; level++) {
    for (size_t i = 0; i < files_[level].size(); i++) {
      FileMetaData* f = files_[level][i];
      assert(f->refs > 0);
      f->refs--;
      if (f->refs <= 0) {
        delete f;
      }
    }
  }
}

int FindFile(const InternalKeyComparator& icmp,
             const std::vector<FileMetaData*>& files, const Slice& key) {
  uint32_t left = 0;
  uint32_t right = files.size();
  while (left < right) {
    uint32_t mid = (left + right) / 2;
    const FileMetaData* f = files[mid];
    if (icmp.InternalKeyComparator::Compare(f->largest.Encode(), key) < 0) {
      // Key at "mid.largest" is < "target".  Therefore all
      // files at or before "mid" are uninteresting.
      left = mid + 1;
    } else {
      // Key at "mid.largest" is >= "target".  Therefore all files
      // after "mid" are uninteresting.
      right = mid;
    }
  }
  return right;
}

static bool AfterFile(const Comparator* ucmp, const Slice* user_key,
                      const FileMetaData* f) {
  // null user_key occurs before all keys and is therefore never after *f
  return (user_key != nullptr &&
          ucmp->Compare(*user_key, f->largest.user_key()) > 0);
}

static bool BeforeFile(const Comparator* ucmp, const Slice* user_key,
                       const FileMetaData* f) {
  // null user_key occurs after all keys and is therefore never before *f
  return (user_key != nullptr &&
          ucmp->Compare(*user_key, f->smallest.user_key()) < 0);
}

bool SomeFileOverlapsRange(const InternalKeyComparator& icmp,
                           bool disjoint_sorted_files,
                           const std::vector<FileMetaData*>& files,
                           const Slice* smallest_user_key,
                           const Slice* largest_user_key) {
  const Comparator* ucmp = icmp.user_comparator();
  if (!disjoint_sorted_files) {
    // Need to check against all files
    for (size_t i = 0; i < files.size(); i++) {
      const FileMetaData* f = files[i];
      if (AfterFile(ucmp, smallest_user_key, f) ||
          BeforeFile(ucmp, largest_user_key, f)) {
        // No overlap
      } else {
        return true;  // Overlap
      }
    }
    return false;
  }

  // Binary search over file list
  uint32_t index = 0;
  if (smallest_user_key != nullptr) {
    // Find the earliest possible internal key for smallest_user_key
    InternalKey small_key(*smallest_user_key, kMaxSequenceNumber,
                          kValueTypeForSeek);
    index = FindFile(icmp, files, small_key.Encode());
  }

  if (index >= files.size()) {
    // beginning of range is after all files, so no overlap.
    return false;
  }

  return !BeforeFile(ucmp, largest_user_key, files[index]);
}

// An internal iterator.  For a given version/level pair, yields
// information about the files in the level.  For a given entry, key()
// is the largest key that occurs in the file, and value() is an
// 16-byte value containing the file number and file size, both
// encoded using EncodeFixed64.
class Version::LevelFileNumIterator : public Iterator {
 public:
  LevelFileNumIterator(const InternalKeyComparator& icmp,
                       const std::vector<FileMetaData*>* flist)
      : icmp_(icmp), flist_(flist), index_(flist->size()) {  // Marks as invalid
  }
  bool Valid() const override { return index_ < flist_->size(); }
  void Seek(const Slice& target) override {
    index_ = FindFile(icmp_, *flist_, target);
  }
  void SeekToFirst() override { index_ = 0; }
  void SeekToLast() override {
    index_ = flist_->empty() ? 0 : flist_->size() - 1;
  }
  void Next() override {
    assert(Valid());
    index_++;
  }
  void Prev() override {
    assert(Valid());
    if (index_ == 0) {
      index_ = flist_->size();  // Marks as invalid
    } else {
      index_--;
    }
  }
  Slice key() const override {
    assert(Valid());
    return (*flist_)[index_]->largest.Encode();
  }
  Slice value() const override {
    assert(Valid());
    EncodeFixed64(value_buf_, (*flist_)[index_]->number);
    EncodeFixed64(value_buf_ + 8, (*flist_)[index_]->file_size);
    return Slice(value_buf_, sizeof(value_buf_));
  }
  Status status() const override { return Status::OK(); }

 private:
  const InternalKeyComparator icmp_;
  const std::vector<FileMetaData*>* const flist_;
  uint32_t index_;

  // Backing store for value().  Holds the file number and size.
  mutable char value_buf_[16];
};

static Iterator* GetFileIterator(void* arg, const ReadOptions& options,
                                 const Slice& file_value) {
  TableCache* cache = reinterpret_cast<TableCache*>(arg);
  if (file_value.size() != 16) {
    return NewErrorIterator(
        Status::Corruption("FileReader invoked with unexpected value"));
  } else {
    return cache->NewIterator(options, DecodeFixed64(file_value.data()),
                              DecodeFixed64(file_value.data() + 8));
  }
}

Iterator* Version::NewConcatenatingIterator(const ReadOptions& options,
                                            int level) const {
  return NewTwoLevelIterator(
      new LevelFileNumIterator(vset_->icmp_, &files_[level]), &GetFileIterator,
      vset_->table_cache_, options);
}

void Version::AddIterators(const ReadOptions& options,
                           std::vector<Iterator*>* iters) {
  // Merge all level zero files together since they may overlap
  for (size_t i = 0; i < files_[0].size(); i++) {
    iters->push_back(vset_->table_cache_->NewIterator(
        options, files_[0][i]->number, files_[0][i]->file_size));
  }

  // For levels > 0, we can use a concatenating iterator that sequentially
  // walks through the non-overlapping files in the level, opening them
  // lazily.
  for (int level = 1; level < config::kNumLevels; level++) {
    if (!files_[level].empty()) {
      iters->push_back(NewConcatenatingIterator(options, level));
    }
  }
}

// Callback from TableCache::Get()
namespace {
enum SaverState {
  kNotFound,
  kFound,
  kDeleted,
  kCorrupt,
};
struct Saver {
  SaverState state;
  const Comparator* ucmp;
  Slice user_key;
  std::string* value;
};
}  // namespace
static void SaveValue(void* arg, const Slice& ikey, const Slice& v) {
  Saver* s = reinterpret_cast<Saver*>(arg);
  ParsedInternalKey parsed_key;
  if (!ParseInternalKey(ikey, &parsed_key)) {
    s->state = kCorrupt;
  } else {
    if (s->ucmp->Compare(parsed_key.user_key, s->user_key) == 0) {
      s->state = (parsed_key.type == kTypeValue) ? kFound : kDeleted;
      if (s->state == kFound) {
        s->value->assign(v.data(), v.size());
      }
    }
  }
}

static bool NewestFirst(FileMetaData* a, FileMetaData* b) {
  return a->number > b->number;
}

void Version::ForEachOverlapping(Slice user_key, Slice internal_key, void* arg,
                                 bool (*func)(void*, int, FileMetaData*)) {
  const Comparator* ucmp = vset_->icmp_.user_comparator();

  // Search level-0 in order from newest to oldest.
  std::vector<FileMetaData*> tmp;
  tmp.reserve(files_[0].size());
  for (uint32_t i = 0; i < files_[0].size(); i++) {
    FileMetaData* f = files_[0][i];
    if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 &&
        ucmp->Compare(user_key, f->largest.user_key()) <= 0) {
      tmp.push_back(f);
    }
  }
  if (!tmp.empty()) {
    std::sort(tmp.begin(), tmp.end(), NewestFirst);
    for (uint32_t i = 0; i < tmp.size(); i++) {
      if (!(*func)(arg, 0, tmp[i])) {
        return;
      }
    }
  }

  // Search other levels.
  for (int level = 1; level < config::kNumLevels; level++) {
    size_t num_files = files_[level].size();
    if (num_files == 0) continue;

    // Binary search to find earliest index whose largest key >= internal_key.
    uint32_t index = FindFile(vset_->icmp_, files_[level], internal_key);
    if (index < num_files) {
      FileMetaData* f = files_[level][index];
      if (ucmp->Compare(user_key, f->smallest.user_key()) < 0) {
        // All of "f" is past any data for user_key
      } else {
        if (!(*func)(arg, level, f)) {
          return;
        }
      }
    }
  }
}

Status Version::Get(const ReadOptions& options, const LookupKey& k,
                    std::string* value, GetStats* stats) {
  stats->seek_file = nullptr;
  stats->seek_file_level = -1;

  struct State {
    Saver saver;
    GetStats* stats;
    const ReadOptions* options;
    Slice ikey;
    FileMetaData* last_file_read;
    int last_file_read_level;

    VersionSet* vset;
    Status s;
    bool found;

    static bool Match(void* arg, int level, FileMetaData* f) {
      State* state = reinterpret_cast<State*>(arg);

      if (state->stats->seek_file == nullptr &&
          state->last_file_read != nullptr) {
        // We have had more than one seek for this read.  Charge the 1st file.
        state->stats->seek_file = state->last_file_read;
        state->stats->seek_file_level = state->last_file_read_level;
      }

      state->last_file_read = f;
      state->last_file_read_level = level;

      state->s = state->vset->table_cache_->Get(*state->options, f->number,
                                                f->file_size, state->ikey,
                                                &state->saver, SaveValue);
      if (!state->s.ok()) {
        state->found = true;
        return false;
      }
      switch (state->saver.state) {
        case kNotFound:
          return true;  // Keep searching in other files
        case kFound:
          state->found = true;
          return false;
        case kDeleted:
          return false;
        case kCorrupt:
          state->s =
              Status::Corruption("corrupted key for ", state->saver.user_key);
          state->found = true;
          return false;
      }

      // Not reached. Added to avoid false compilation warnings of
      // "control reaches end of non-void function".
      return false;
    }
  };

  State state;
  state.found = false;
  state.stats = stats;
  state.last_file_read = nullptr;
  state.last_file_read_level = -1;

  state.options = &options;
  state.ikey = k.internal_key();
  state.vset = vset_;

  state.saver.state = kNotFound;
  state.saver.ucmp = vset_->icmp_.user_comparator();
  state.saver.user_key = k.user_key();
  state.saver.value = value;

  ForEachOverlapping(state.saver.user_key, state.ikey, &state, &State::Match);

  return state.found ? state.s : Status::NotFound(Slice());
}

bool Version::UpdateStats(const GetStats& stats) {
  FileMetaData* f = stats.seek_file;
  if (f != nullptr) {
    f->allowed_seeks--;
    if (f->allowed_seeks <= 0 && file_to_compact_ == nullptr) {
      file_to_compact_ = f;
      file_to_compact_level_ = stats.seek_file_level;
      return true;
    }
  }
  return false;
}

bool Version::RecordReadSample(Slice internal_key) {
  ParsedInternalKey ikey;
  if (!ParseInternalKey(internal_key, &ikey)) {
    return false;
  }

  struct State {
    GetStats stats;  // Holds first matching file
    int matches;

    static bool Match(void* arg, int level, FileMetaData* f) {
      State* state = reinterpret_cast<State*>(arg);
      state->matches++;
      if (state->matches == 1) {
        // Remember first match.
        state->stats.seek_file = f;
        state->stats.seek_file_level = level;
      }
      // We can stop iterating once we have a second match.
      return state->matches < 2;
    }
  };

  State state;
  state.matches = 0;
  ForEachOverlapping(ikey.user_key, internal_key, &state, &State::Match);

  // Must have at least two matches since we want to merge across
  // files. But what if we have a single file that contains many
  // overwrites and deletions?  Should we have another mechanism for
  // finding such files?
  if (state.matches >= 2) {
    // 1MB cost is about 1 seek (see comment in Builder::Apply).
    return UpdateStats(state.stats);
  }
  return false;
}

void Version::Ref() { ++refs_; }

void Version::Unref() {
  assert(this != &vset_->dummy_versions_);
  assert(refs_ >= 1);
  --refs_;
  if (refs_ == 0) {
    delete this;
  }
}

bool Version::OverlapInLevel(int level, const Slice* smallest_user_key,
                             const Slice* largest_user_key) {
  return SomeFileOverlapsRange(vset_->icmp_, (level > 0), files_[level],
                               smallest_user_key, largest_user_key);
}

int Version::PickLevelForMemTableOutput(const Slice& smallest_user_key,
                                        const Slice& largest_user_key) {
  int level = 0;
  if (!OverlapInLevel(0, &smallest_user_key, &largest_user_key)) {
    // Push to next level if there is no overlap in next level,
    // and the #bytes overlapping in the level after that are limited.
    InternalKey start(smallest_user_key, kMaxSequenceNumber, kValueTypeForSeek);
    InternalKey limit(largest_user_key, 0, static_cast<ValueType>(0));
    std::vector<FileMetaData*> overlaps;
    while (level < config::kMaxMemCompactLevel) {
      if (OverlapInLevel(level + 1, &smallest_user_key, &largest_user_key)) {
        break;
      }
      if (level + 2 < config::kNumLevels) {
        // Check that file does not overlap too many grandparent bytes.
        GetOverlappingInputs(level + 2, &start, &limit, &overlaps);
        const int64_t sum = TotalFileSize(overlaps);
        if (sum > MaxGrandParentOverlapBytes(vset_->options_)) {
          break;
        }
      }
      level++;
    }
  }
  return level;
}

// Store in "*inputs" all files in "level" that overlap [begin,end]
void Version::GetOverlappingInputs(int level, const InternalKey* begin,
                                   const InternalKey* end,
                                   std::vector<FileMetaData*>* inputs) {
  assert(level >= 0);
  assert(level < config::kNumLevels);
  inputs->clear();
  Slice user_begin, user_end;
  if (begin != nullptr) {
    user_begin = begin->user_key();
  }
  if (end != nullptr) {
    user_end = end->user_key();
  }
  const Comparator* user_cmp = vset_->icmp_.user_comparator();
  for (size_t i = 0; i < files_[level].size();) {
    FileMetaData* f = files_[level][i++];
    const Slice file_start = f->smallest.user_key();
    const Slice file_limit = f->largest.user_key();
    if (begin != nullptr && user_cmp->Compare(file_limit, user_begin) < 0) {
      // "f" is completely before specified range; skip it
    } else if (end != nullptr && user_cmp->Compare(file_start, user_end) > 0) {
      // "f" is completely after specified range; skip it
    } else {
      inputs->push_back(f);
      if (level == 0) {
        // Level-0 files may overlap each other.  So check if the newly
        // added file has expanded the range.  If so, restart search.
        if (begin != nullptr && user_cmp->Compare(file_start, user_begin) < 0) {
          user_begin = file_start;
          inputs->clear();
          i = 0;
        } else if (end != nullptr &&
                   user_cmp->Compare(file_limit, user_end) > 0) {
          user_end = file_limit;
          inputs->clear();
          i = 0;
        }
      }
    }
  }
}

std::string Version::DebugString() const {
  std::string r;
  for (int level = 0; level < config::kNumLevels; level++) {
    // E.g.,
    //   --- level 1 ---
    //   17:123['a' .. 'd']
    //   20:43['e' .. 'g']
    r.append("--- level ");
    AppendNumberTo(&r, level);
    r.append(" ---\n");
    const std::vector<FileMetaData*>& files = files_[level];
    for (size_t i = 0; i < files.size(); i++) {
      r.push_back(' ');
      AppendNumberTo(&r, files[i]->number);
      r.push_back(':');
      AppendNumberTo(&r, files[i]->file_size);
      r.append("[");
      r.append(files[i]->smallest.DebugString());
      r.append(" .. ");
      r.append(files[i]->largest.DebugString());
      r.append("]\n");
    }
  }
  return r;
}

// A helper class so we can efficiently apply a whole sequence
// of edits to a particular state without creating intermediate
// Versions that contain full copies of the intermediate state.
class VersionSet::Builder {
 private:
  // Helper to sort by v->files_[file_number].smallest
  struct BySmallestKey {
    const InternalKeyComparator* internal_comparator;

    bool operator()(FileMetaData* f1, FileMetaData* f2) const {
      int r = internal_comparator->Compare(f1->smallest, f2->smallest);
      if (r != 0) {
        return (r < 0);
      } else {
        // Break ties by file number
        return (f1->number < f2->number);
      }
    }
  };

  typedef std::set<FileMetaData*, BySmallestKey> FileSet;
  struct LevelState {
    std::set<uint64_t> deleted_files;
    FileSet* added_files;
  };

  VersionSet* vset_;
  Version* base_;
  LevelState levels_[config::kNumLevels];

 public:
  // Initialize a builder with the files from *base and other info from *vset
  Builder(VersionSet* vset, Version* base) : vset_(vset), base_(base) {
    base_->Ref();
    BySmallestKey cmp;
    cmp.internal_comparator = &vset_->icmp_;
    for (int level = 0; level < config::kNumLevels; level++) {
      levels_[level].added_files = new FileSet(cmp);
    }
  }

  ~Builder() {
    for (int level = 0; level < config::kNumLevels; level++) {
      const FileSet* added = levels_[level].added_files;
      std::vector<FileMetaData*> to_unref;
      to_unref.reserve(added->size());
      for (FileSet::const_iterator it = added->begin(); it != added->end();
           ++it) {
        to_unref.push_back(*it);
      }
      delete added;
      for (uint32_t i = 0; i < to_unref.size(); i++) {
        FileMetaData* f = to_unref[i];
        f->refs--;
        if (f->refs <= 0) {
          delete f;
        }
      }
    }
    base_->Unref();
  }

  // Apply all of the edits in *edit to the current state.
  void Apply(VersionEdit* edit) {
    // Update compaction pointers
    for (size_t i = 0; i < edit->compact_pointers_.size(); i++) {
      const int level = edit->compact_pointers_[i].first;
      vset_->compact_pointer_[level] =
          edit->compact_pointers_[i].second.Encode().ToString();
    }

    // Delete files
    for (const auto& deleted_file_set_kvp : edit->deleted_files_) {
      const int level = deleted_file_set_kvp.first;
      const uint64_t number = deleted_file_set_kvp.second;
      levels_[level].deleted_files.insert(number);
    }

    // Add new files
    for (size_t i = 0; i < edit->new_files_.size(); i++) {
      const int level = edit->new_files_[i].first;
      FileMetaData* f = new FileMetaData(edit->new_files_[i].second);
      f->refs = 1;

      // We arrange to automatically compact this file after
      // a certain number of seeks.  Let's assume:
      //   (1) One seek costs 10ms
      //   (2) Writing or reading 1MB costs 10ms (100MB/s)
      //   (3) A compaction of 1MB does 25MB of IO:
      //         1MB read from this level
      //         10-12MB read from next level (boundaries may be misaligned)
      //         10-12MB written to next level
      // This implies that 25 seeks cost the same as the compaction
      // of 1MB of data.  I.e., one seek costs approximately the
      // same as the compaction of 40KB of data.  We are a little
      // conservative and allow approximately one seek for every 16KB
      // of data before triggering a compaction.
      f->allowed_seeks = static_cast<int>((f->file_size / 16384U));
      if (f->allowed_seeks < 100) f->allowed_seeks = 100;

      levels_[level].deleted_files.erase(f->number);
      levels_[level].added_files->insert(f);
    }
  }

  // Save the current state in *v.
  void SaveTo(Version* v) {
    BySmallestKey cmp;
    cmp.internal_comparator = &vset_->icmp_;
    for (int level = 0; level < config::kNumLevels; level++) {
      // Merge the set of added files with the set of pre-existing files.
      // Drop any deleted files.  Store the result in *v.
      const std::vector<FileMetaData*>& base_files = base_->files_[level];
      std::vector<FileMetaData*>::const_iterator base_iter = base_files.begin();
      std::vector<FileMetaData*>::const_iterator base_end = base_files.end();
      const FileSet* added_files = levels_[level].added_files;
      v->files_[level].reserve(base_files.size() + added_files->size());
      for (const auto& added_file : *added_files) {
        // Add all smaller files listed in base_
        for (std::vector<FileMetaData*>::const_iterator bpos =
                 std::upper_bound(base_iter, base_end, added_file, cmp);
             base_iter != bpos; ++base_iter) {
          MaybeAddFile(v, level, *base_iter);
        }

        MaybeAddFile(v, level, added_file);
      }

      // Add remaining base files
      for (; base_iter != base_end; ++base_iter) {
        MaybeAddFile(v, level, *base_iter);
      }

#ifndef NDEBUG
      // Make sure there is no overlap in levels > 0
      if (level > 0) {
        for (uint32_t i = 1; i < v->files_[level].size(); i++) {
          const InternalKey& prev_end = v->files_[level][i - 1]->largest;
          const InternalKey& this_begin = v->files_[level][i]->smallest;
          if (vset_->icmp_.Compare(prev_end, this_begin) >= 0) {
            fprintf(stderr, "overlapping ranges in same level %s vs. %s\n",
                    prev_end.DebugString().c_str(),
                    this_begin.DebugString().c_str());
            abort();
          }
        }
      }
#endif
    }
  }

  void MaybeAddFile(Version* v, int level, FileMetaData* f) {
    if (levels_[level].deleted_files.count(f->number) > 0) {
      // File is deleted: do nothing
    } else {
      std::vector<FileMetaData*>* files = &v->files_[level];
      if (level > 0 && !files->empty()) {
        // Must not overlap
        assert(vset_->icmp_.Compare((*files)[files->size() - 1]->largest,
                                    f->smallest) < 0);
      }
      f->refs++;
      files->push_back(f);
    }
  }
};

VersionSet::VersionSet(const std::string& dbname, const Options* options,
                       TableCache* table_cache,
                       const InternalKeyComparator* cmp)
    : env_(options->env),
      dbname_(dbname),
      options_(options),
      table_cache_(table_cache),
      icmp_(*cmp),
      next_file_number_(2),
      manifest_file_number_(0),  // Filled by Recover()
      last_sequence_(0),
      log_number_(0),
      prev_log_number_(0),
      descriptor_file_(nullptr),
      descriptor_log_(nullptr),
      dummy_versions_(this),
      current_(nullptr) {
  AppendVersion(new Version(this));
}

VersionSet::~VersionSet() {
  current_->Unref();
  assert(dummy_versions_.next_ == &dummy_versions_);  // List must be empty
  delete descriptor_log_;
  delete descriptor_file_;
}

void VersionSet::AppendVersion(Version* v) {
  // Make "v" current
  assert(v->refs_ == 0);
  assert(v != current_);
  if (current_ != nullptr) {
    current_->Unref();
  }
  current_ = v;
  v->Ref();

  // Append to linked list
  v->prev_ = dummy_versions_.prev_;
  v->next_ = &dummy_versions_;
  v->prev_->next_ = v;
  v->next_->prev_ = v;
}

Status VersionSet::LogAndApply(VersionEdit* edit, port::Mutex* mu) {
  if (edit->has_log_number_) {
    assert(edit->log_number_ >= log_number_);
    assert(edit->log_number_ < next_file_number_);
  } else {
    edit->SetLogNumber(log_number_);
  }

  if (!edit->has_prev_log_number_) {
    edit->SetPrevLogNumber(prev_log_number_);
  }

  edit->SetNextFile(next_file_number_);
  edit->SetLastSequence(last_sequence_);

  Version* v = new Version(this);
  {
    Builder builder(this, current_);
    builder.Apply(edit);
    builder.SaveTo(v);
  }
  Finalize(v);

  // Initialize new descriptor log file if necessary by creating
  // a temporary file that contains a snapshot of the current version.
  std::string new_manifest_file;
  Status s;
  if (descriptor_log_ == nullptr) {
    // No reason to unlock *mu here since we only hit this path in the
    // first call to LogAndApply (when opening the database).
    assert(descriptor_file_ == nullptr);
    new_manifest_file = DescriptorFileName(dbname_, manifest_file_number_);
    edit->SetNextFile(next_file_number_);
    s = env_->NewWritableFile(new_manifest_file, &descriptor_file_);
    if (s.ok()) {
      descriptor_log_ = new log::Writer(descriptor_file_);
      s = WriteSnapshot(descriptor_log_);
    }
  }

  // Unlock during expensive MANIFEST log write
  {
    mu->Unlock();

    // Write new record to MANIFEST log
    if (s.ok()) {
      std::string record;
      edit->EncodeTo(&record);
      s = descriptor_log_->AddRecord(record);
      if (s.ok()) {
        s = descriptor_file_->Sync();
      }
      if (!s.ok()) {
        Log(options_->info_log, "MANIFEST write: %s\n", s.ToString().c_str());
      }
    }

    // If we just created a new descriptor file, install it by writing a
    // new CURRENT file that points to it.
    if (s.ok() && !new_manifest_file.empty()) {
      s = SetCurrentFile(env_, dbname_, manifest_file_number_);
    }

    mu->Lock();
  }

  // Install the new version
  if (s.ok()) {
    AppendVersion(v);
    log_number_ = edit->log_number_;
    prev_log_number_ = edit->prev_log_number_;
  } else {
    delete v;
    if (!new_manifest_file.empty()) {
      delete descriptor_log_;
      delete descriptor_file_;
      descriptor_log_ = nullptr;
      descriptor_file_ = nullptr;
      env_->DeleteFile(new_manifest_file);
    }
  }

  return s;
}

Status VersionSet::Recover(bool* save_manifest) {
  struct LogReporter : public log::Reader::Reporter {
    Status* status;
    void Corruption(size_t bytes, const Status& s) override {
      if (this->status->ok()) *this->status = s;
    }
  };

  // Read "CURRENT" file, which contains a pointer to the current manifest file
  std::string current;
  Status s = ReadFileToString(env_, CurrentFileName(dbname_), &current);
  if (!s.ok()) {
    return s;
  }
  if (current.empty() || current[current.size() - 1] != '\n') {
    return Status::Corruption("CURRENT file does not end with newline");
  }
  current.resize(current.size() - 1);

  std::string dscname = dbname_ + "/" + current;
  SequentialFile* file;
  s = env_->NewSequentialFile(dscname, &file);
  if (!s.ok()) {
    if (s.IsNotFound()) {
      return Status::Corruption("CURRENT points to a non-existent file",
                                s.ToString());
    }
    return s;
  }

  bool have_log_number = false;
  bool have_prev_log_number = false;
  bool have_next_file = false;
  bool have_last_sequence = false;
  uint64_t next_file = 0;
  uint64_t last_sequence = 0;
  uint64_t log_number = 0;
  uint64_t prev_log_number = 0;
  Builder builder(this, current_);

  {
    LogReporter reporter;
    reporter.status = &s;
    log::Reader reader(file, &reporter, true /*checksum*/,
                       0 /*initial_offset*/);
    Slice record;
    std::string scratch;
    while (reader.ReadRecord(&record, &scratch) && s.ok()) {
      VersionEdit edit;
      s = edit.DecodeFrom(record);
      if (s.ok()) {
        if (edit.has_comparator_ &&
            edit.comparator_ != icmp_.user_comparator()->Name()) {
          s = Status::InvalidArgument(
              edit.comparator_ + " does not match existing comparator ",
              icmp_.user_comparator()->Name());
        }
      }

      if (s.ok()) {
        builder.Apply(&edit);
      }

      if (edit.has_log_number_) {
        log_number = edit.log_number_;
        have_log_number = true;
      }

      if (edit.has_prev_log_number_) {
        prev_log_number = edit.prev_log_number_;
        have_prev_log_number = true;
      }

      if (edit.has_next_file_number_) {
        next_file = edit.next_file_number_;
        have_next_file = true;
      }

      if (edit.has_last_sequence_) {
        last_sequence = edit.last_sequence_;
        have_last_sequence = true;
      }
    }
  }
  delete file;
  file = nullptr;

  if (s.ok()) {
    if (!have_next_file) {
      s = Status::Corruption("no meta-nextfile entry in descriptor");
    } else if (!have_log_number) {
      s = Status::Corruption("no meta-lognumber entry in descriptor");
    } else if (!have_last_sequence) {
      s = Status::Corruption("no last-sequence-number entry in descriptor");
    }

    if (!have_prev_log_number) {
      prev_log_number = 0;
    }

    MarkFileNumberUsed(prev_log_number);
    MarkFileNumberUsed(log_number);
  }

  if (s.ok()) {
    Version* v = new Version(this);
    builder.SaveTo(v);
    // Install recovered version
    Finalize(v);
    AppendVersion(v);
    manifest_file_number_ = next_file;
    next_file_number_ = next_file + 1;
    last_sequence_ = last_sequence;
    log_number_ = log_number;
    prev_log_number_ = prev_log_number;

    // See if we can reuse the existing MANIFEST file.
    if (ReuseManifest(dscname, current)) {
      // No need to save new manifest
    } else {
      *save_manifest = true;
    }
  }

  return s;
}

bool VersionSet::ReuseManifest(const std::string& dscname,
                               const std::string& dscbase) {
  if (!options_->reuse_logs) {
    return false;
  }
  FileType manifest_type;
  uint64_t manifest_number;
  uint64_t manifest_size;
  if (!ParseFileName(dscbase, &manifest_number, &manifest_type) ||
      manifest_type != kDescriptorFile ||
      !env_->GetFileSize(dscname, &manifest_size).ok() ||
      // Make new compacted MANIFEST if old one is too big
      manifest_size >= TargetFileSize(options_)) {
    return false;
  }

  assert(descriptor_file_ == nullptr);
  assert(descriptor_log_ == nullptr);
  Status r = env_->NewAppendableFile(dscname, &descriptor_file_);
  if (!r.ok()) {
    Log(options_->info_log, "Reuse MANIFEST: %s\n", r.ToString().c_str());
    assert(descriptor_file_ == nullptr);
    return false;
  }

  Log(options_->info_log, "Reusing MANIFEST %s\n", dscname.c_str());
  descriptor_log_ = new log::Writer(descriptor_file_, manifest_size);
  manifest_file_number_ = manifest_number;
  return true;
}

void VersionSet::MarkFileNumberUsed(uint64_t number) {
  if (next_file_number_ <= number) {
    next_file_number_ = number + 1;
  }
}

void VersionSet::Finalize(Version* v) {
  // Precomputed best level for next compaction
  int best_level = -1;
  double best_score = -1;

  for (int level = 0; level < config::kNumLevels - 1; level++) {
    double score;
    if (level == 0) {
      // We treat level-0 specially by bounding the number of files
      // instead of number of bytes for two reasons:
      //
      // (1) With larger write-buffer sizes, it is nice not to do too
      // many level-0 compactions.
      //
      // (2) The files in level-0 are merged on every read and
      // therefore we wish to avoid too many files when the individual
      // file size is small (perhaps because of a small write-buffer
      // setting, or very high compression ratios, or lots of
      // overwrites/deletions).
      score = v->files_[level].size() /
              static_cast<double>(config::kL0_CompactionTrigger);
    } else {
      // Compute the ratio of current size to size limit.
      const uint64_t level_bytes = TotalFileSize(v->files_[level]);
      score =
          static_cast<double>(level_bytes) / MaxBytesForLevel(options_, level);
    }

    if (score > best_score) {
      best_level = level;
      best_score = score;
    }
  }

  v->compaction_level_ = best_level;
  v->compaction_score_ = best_score;
}

Status VersionSet::WriteSnapshot(log::Writer* log) {
  // TODO: Break up into multiple records to reduce memory usage on recovery?

  // Save metadata
  VersionEdit edit;
  edit.SetComparatorName(icmp_.user_comparator()->Name());

  // Save compaction pointers
  for (int level = 0; level < config::kNumLevels; level++) {
    if (!compact_pointer_[level].empty()) {
      InternalKey key;
      key.DecodeFrom(compact_pointer_[level]);
      edit.SetCompactPointer(level, key);
    }
  }

  // Save files
  for (int level = 0; level < config::kNumLevels; level++) {
    const std::vector<FileMetaData*>& files = current_->files_[level];
    for (size_t i = 0; i < files.size(); i++) {
      const FileMetaData* f = files[i];
      edit.AddFile(level, f->number, f->file_size, f->smallest, f->largest);
    }
  }

  std::string record;
  edit.EncodeTo(&record);
  return log->AddRecord(record);
}

int VersionSet::NumLevelFiles(int level) const {
  assert(level >= 0);
  assert(level < config::kNumLevels);
  return current_->files_[level].size();
}

const char* VersionSet::LevelSummary(LevelSummaryStorage* scratch) const {
  // Update code if kNumLevels changes
  static_assert(config::kNumLevels == 7, "");
  snprintf(scratch->buffer, sizeof(scratch->buffer),
           "files[ %d %d %d %d %d %d %d ]", int(current_->files_[0].size()),
           int(current_->files_[1].size()), int(current_->files_[2].size()),
           int(current_->files_[3].size()), int(current_->files_[4].size()),
           int(current_->files_[5].size()), int(current_->files_[6].size()));
  return scratch->buffer;
}

uint64_t VersionSet::ApproximateOffsetOf(Version* v, const InternalKey& ikey) {
  uint64_t result = 0;
  for (int level = 0; level < config::kNumLevels; level++) {
    const std::vector<FileMetaData*>& files = v->files_[level];
    for (size_t i = 0; i < files.size(); i++) {
      if (icmp_.Compare(files[i]->largest, ikey) <= 0) {
        // Entire file is before "ikey", so just add the file size
        result += files[i]->file_size;
      } else if (icmp_.Compare(files[i]->smallest, ikey) > 0) {
        // Entire file is after "ikey", so ignore
        if (level > 0) {
          // Files other than level 0 are sorted by meta->smallest, so
          // no further files in this level will contain data for
          // "ikey".
          break;
        }
      } else {
        // "ikey" falls in the range for this table.  Add the
        // approximate offset of "ikey" within the table.
        Table* tableptr;
        Iterator* iter = table_cache_->NewIterator(
            ReadOptions(), files[i]->number, files[i]->file_size, &tableptr);
        if (tableptr != nullptr) {
          result += tableptr->ApproximateOffsetOf(ikey.Encode());
        }
        delete iter;
      }
    }
  }
  return result;
}

void VersionSet::AddLiveFiles(std::set<uint64_t>* live) {
  for (Version* v = dummy_versions_.next_; v != &dummy_versions_;
       v = v->next_) {
    for (int level = 0; level < config::kNumLevels; level++) {
      const std::vector<FileMetaData*>& files = v->files_[level];
      for (size_t i = 0; i < files.size(); i++) {
        live->insert(files[i]->number);
      }
    }
  }
}

int64_t VersionSet::NumLevelBytes(int level) const {
  assert(level >= 0);
  assert(level < config::kNumLevels);
  return TotalFileSize(current_->files_[level]);
}

int64_t VersionSet::MaxNextLevelOverlappingBytes() {
  int64_t result = 0;
  std::vector<FileMetaData*> overlaps;
  for (int level = 1; level < config::kNumLevels - 1; level++) {
    for (size_t i = 0; i < current_->files_[level].size(); i++) {
      const FileMetaData* f = current_->files_[level][i];
      current_->GetOverlappingInputs(level + 1, &f->smallest, &f->largest,
                                     &overlaps);
      const int64_t sum = TotalFileSize(overlaps);
      if (sum > result) {
        result = sum;
      }
    }
  }
  return result;
}

// Stores the minimal range that covers all entries in inputs in
// *smallest, *largest.
// REQUIRES: inputs is not empty
void VersionSet::GetRange(const std::vector<FileMetaData*>& inputs,
                          InternalKey* smallest, InternalKey* largest) {
  assert(!inputs.empty());
  smallest->Clear();
  largest->Clear();
  for (size_t i = 0; i < inputs.size(); i++) {
    FileMetaData* f = inputs[i];
    if (i == 0) {
      *smallest = f->smallest;
      *largest = f->largest;
    } else {
      if (icmp_.Compare(f->smallest, *smallest) < 0) {
        *smallest = f->smallest;
      }
      if (icmp_.Compare(f->largest, *largest) > 0) {
        *largest = f->largest;
      }
    }
  }
}

// Stores the minimal range that covers all entries in inputs1 and inputs2
// in *smallest, *largest.
// REQUIRES: inputs is not empty
void VersionSet::GetRange2(const std::vector<FileMetaData*>& inputs1,
                           const std::vector<FileMetaData*>& inputs2,
                           InternalKey* smallest, InternalKey* largest) {
  std::vector<FileMetaData*> all = inputs1;
  all.insert(all.end(), inputs2.begin(), inputs2.end());
  GetRange(all, smallest, largest);
}

Iterator* VersionSet::MakeInputIterator(Compaction* c) {
  ReadOptions options;
  options.verify_checksums = options_->paranoid_checks;
  options.fill_cache = false;

  // Level-0 files have to be merged together.  For other levels,
  // we will make a concatenating iterator per level.
  // TODO(opt): use concatenating iterator for level-0 if there is no overlap
  const int space = (c->level() == 0 ? c->inputs_[0].size() + 1 : 2);
  Iterator** list = new Iterator*[space];
  int num = 0;
  for (int which = 0; which < 2; which++) {
    if (!c->inputs_[which].empty()) {
      if (c->level() + which == 0) {
        const std::vector<FileMetaData*>& files = c->inputs_[which];
        for (size_t i = 0; i < files.size(); i++) {
          list[num++] = table_cache_->NewIterator(options, files[i]->number,
                                                  files[i]->file_size);
        }
      } else {
        // Create concatenating iterator for the files from this level
        list[num++] = NewTwoLevelIterator(
            new Version::LevelFileNumIterator(icmp_, &c->inputs_[which]),
            &GetFileIterator, table_cache_, options);
      }
    }
  }
  assert(num <= space);
  Iterator* result = NewMergingIterator(&icmp_, list, num);
  delete[] list;
  return result;
}

Compaction* VersionSet::PickCompaction() {
  Compaction* c;
  int level;

  // We prefer compactions triggered by too much data in a level over
  // the compactions triggered by seeks.
  const bool size_compaction = (current_->compaction_score_ >= 1);
  const bool seek_compaction = (current_->file_to_compact_ != nullptr);
  if (size_compaction) {
    level = current_->compaction_level_;
    assert(level >= 0);
    assert(level + 1 < config::kNumLevels);
    c = new Compaction(options_, level);

    // Pick the first file that comes after compact_pointer_[level]
    for (size_t i = 0; i < current_->files_[level].size(); i++) {
      FileMetaData* f = current_->files_[level][i];
      if (compact_pointer_[level].empty() ||
          icmp_.Compare(f->largest.Encode(), compact_pointer_[level]) > 0) {
        c->inputs_[0].push_back(f);
        break;
      }
    }
    if (c->inputs_[0].empty()) {
      // Wrap-around to the beginning of the key space
      c->inputs_[0].push_back(current_->files_[level][0]);
    }
  } else if (seek_compaction) {
    level = current_->file_to_compact_level_;
    c = new Compaction(options_, level);
    c->inputs_[0].push_back(current_->file_to_compact_);
  } else {
    return nullptr;
  }

  c->input_version_ = current_;
  c->input_version_->Ref();

  // Files in level 0 may overlap each other, so pick up all overlapping ones
  if (level == 0) {
    InternalKey smallest, largest;
    GetRange(c->inputs_[0], &smallest, &largest);
    // Note that the next call will discard the file we placed in
    // c->inputs_[0] earlier and replace it with an overlapping set
    // which will include the picked file.
    current_->GetOverlappingInputs(0, &smallest, &largest, &c->inputs_[0]);
    assert(!c->inputs_[0].empty());
  }

  SetupOtherInputs(c);

  return c;
}

// Finds the largest key in a vector of files. Returns true if files it not
// empty.
bool FindLargestKey(const InternalKeyComparator& icmp,
                    const std::vector<FileMetaData*>& files,
                    InternalKey* largest_key) {
  if (files.empty()) {
    return false;
  }
  *largest_key = files[0]->largest;
  for (size_t i = 1; i < files.size(); ++i) {
    FileMetaData* f = files[i];
    if (icmp.Compare(f->largest, *largest_key) > 0) {
      *largest_key = f->largest;
    }
  }
  return true;
}

// Finds minimum file b2=(l2, u2) in level file for which l2 > u1 and
// user_key(l2) = user_key(u1)
FileMetaData* FindSmallestBoundaryFile(
    const InternalKeyComparator& icmp,
    const std::vector<FileMetaData*>& level_files,
    const InternalKey& largest_key) {
  const Comparator* user_cmp = icmp.user_comparator();
  FileMetaData* smallest_boundary_file = nullptr;
  for (size_t i = 0; i < level_files.size(); ++i) {
    FileMetaData* f = level_files[i];
    if (icmp.Compare(f->smallest, largest_key) > 0 &&
        user_cmp->Compare(f->smallest.user_key(), largest_key.user_key()) ==
            0) {
      if (smallest_boundary_file == nullptr ||
          icmp.Compare(f->smallest, smallest_boundary_file->smallest) < 0) {
        smallest_boundary_file = f;
      }
    }
  }
  return smallest_boundary_file;
}

// Extracts the largest file b1 from |compaction_files| and then searches for a
// b2 in |level_files| for which user_key(u1) = user_key(l2). If it finds such a
// file b2 (known as a boundary file) it adds it to |compaction_files| and then
// searches again using this new upper bound.
//
// If there are two blocks, b1=(l1, u1) and b2=(l2, u2) and
// user_key(u1) = user_key(l2), and if we compact b1 but not b2 then a
// subsequent get operation will yield an incorrect result because it will
// return the record from b2 in level i rather than from b1 because it searches
// level by level for records matching the supplied user key.
//
// parameters:
//   in     level_files:      List of files to search for boundary files.
//   in/out compaction_files: List of files to extend by adding boundary files.
void AddBoundaryInputs(const InternalKeyComparator& icmp,
                       const std::vector<FileMetaData*>& level_files,
                       std::vector<FileMetaData*>* compaction_files) {
  InternalKey largest_key;

  // Quick return if compaction_files is empty.
  if (!FindLargestKey(icmp, *compaction_files, &largest_key)) {
    return;
  }

  bool continue_searching = true;
  while (continue_searching) {
    FileMetaData* smallest_boundary_file =
        FindSmallestBoundaryFile(icmp, level_files, largest_key);

    // If a boundary file was found advance largest_key, otherwise we're done.
    if (smallest_boundary_file != NULL) {
      compaction_files->push_back(smallest_boundary_file);
      largest_key = smallest_boundary_file->largest;
    } else {
      continue_searching = false;
    }
  }
}

void VersionSet::SetupOtherInputs(Compaction* c) {
  const int level = c->level();
  InternalKey smallest, largest;

  AddBoundaryInputs(icmp_, current_->files_[level], &c->inputs_[0]);
  GetRange(c->inputs_[0], &smallest, &largest);

  current_->GetOverlappingInputs(level + 1, &smallest, &largest,
                                 &c->inputs_[1]);

  // Get entire range covered by compaction
  InternalKey all_start, all_limit;
  GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit);

  // See if we can grow the number of inputs in "level" without
  // changing the number of "level+1" files we pick up.
  if (!c->inputs_[1].empty()) {
    std::vector<FileMetaData*> expanded0;
    current_->GetOverlappingInputs(level, &all_start, &all_limit, &expanded0);
    AddBoundaryInputs(icmp_, current_->files_[level], &expanded0);
    const int64_t inputs0_size = TotalFileSize(c->inputs_[0]);
    const int64_t inputs1_size = TotalFileSize(c->inputs_[1]);
    const int64_t expanded0_size = TotalFileSize(expanded0);
    if (expanded0.size() > c->inputs_[0].size() &&
        inputs1_size + expanded0_size <
            ExpandedCompactionByteSizeLimit(options_)) {
      InternalKey new_start, new_limit;
      GetRange(expanded0, &new_start, &new_limit);
      std::vector<FileMetaData*> expanded1;
      current_->GetOverlappingInputs(level + 1, &new_start, &new_limit,
                                     &expanded1);
      if (expanded1.size() == c->inputs_[1].size()) {
        Log(options_->info_log,
            "Expanding@%d %d+%d (%ld+%ld bytes) to %d+%d (%ld+%ld bytes)\n",
            level, int(c->inputs_[0].size()), int(c->inputs_[1].size()),
            long(inputs0_size), long(inputs1_size), int(expanded0.size()),
            int(expanded1.size()), long(expanded0_size), long(inputs1_size));
        smallest = new_start;
        largest = new_limit;
        c->inputs_[0] = expanded0;
        c->inputs_[1] = expanded1;
        GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit);
      }
    }
  }

  // Compute the set of grandparent files that overlap this compaction
  // (parent == level+1; grandparent == level+2)
  if (level + 2 < config::kNumLevels) {
    current_->GetOverlappingInputs(level + 2, &all_start, &all_limit,
                                   &c->grandparents_);
  }

  // Update the place where we will do the next compaction for this level.
  // We update this immediately instead of waiting for the VersionEdit
  // to be applied so that if the compaction fails, we will try a different
  // key range next time.
  compact_pointer_[level] = largest.Encode().ToString();
  c->edit_.SetCompactPointer(level, largest);
}

Compaction* VersionSet::CompactRange(int level, const InternalKey* begin,
                                     const InternalKey* end) {
  std::vector<FileMetaData*> inputs;
  current_->GetOverlappingInputs(level, begin, end, &inputs);
  if (inputs.empty()) {
    return nullptr;
  }

  // Avoid compacting too much in one shot in case the range is large.
  // But we cannot do this for level-0 since level-0 files can overlap
  // and we must not pick one file and drop another older file if the
  // two files overlap.
  if (level > 0) {
    const uint64_t limit = MaxFileSizeForLevel(options_, level);
    uint64_t total = 0;
    for (size_t i = 0; i < inputs.size(); i++) {
      uint64_t s = inputs[i]->file_size;
      total += s;
      if (total >= limit) {
        inputs.resize(i + 1);
        break;
      }
    }
  }

  Compaction* c = new Compaction(options_, level);
  c->input_version_ = current_;
  c->input_version_->Ref();
  c->inputs_[0] = inputs;
  SetupOtherInputs(c);
  return c;
}

Compaction::Compaction(const Options* options, int level)
    : level_(level),
      max_output_file_size_(MaxFileSizeForLevel(options, level)),
      input_version_(nullptr),
      grandparent_index_(0),
      seen_key_(false),
      overlapped_bytes_(0) {
  for (int i = 0; i < config::kNumLevels; i++) {
    level_ptrs_[i] = 0;
  }
}

Compaction::~Compaction() {
  if (input_version_ != nullptr) {
    input_version_->Unref();
  }
}

bool Compaction::IsTrivialMove() const {
  const VersionSet* vset = input_version_->vset_;
  // Avoid a move if there is lots of overlapping grandparent data.
  // Otherwise, the move could create a parent file that will require
  // a very expensive merge later on.
  return (num_input_files(0) == 1 && num_input_files(1) == 0 &&
          TotalFileSize(grandparents_) <=
              MaxGrandParentOverlapBytes(vset->options_));
}

void Compaction::AddInputDeletions(VersionEdit* edit) {
  for (int which = 0; which < 2; which++) {
    for (size_t i = 0; i < inputs_[which].size(); i++) {
      edit->DeleteFile(level_ + which, inputs_[which][i]->number);
    }
  }
}

bool Compaction::IsBaseLevelForKey(const Slice& user_key) {
  // Maybe use binary search to find right entry instead of linear search?
  const Comparator* user_cmp = input_version_->vset_->icmp_.user_comparator();
  for (int lvl = level_ + 2; lvl < config::kNumLevels; lvl++) {
    const std::vector<FileMetaData*>& files = input_version_->files_[lvl];
    while (level_ptrs_[lvl] < files.size()) {
      FileMetaData* f = files[level_ptrs_[lvl]];
      if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) {
        // We've advanced far enough
        if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) {
          // Key falls in this file's range, so definitely not base level
          return false;
        }
        break;
      }
      level_ptrs_[lvl]++;
    }
  }
  return true;
}

bool Compaction::ShouldStopBefore(const Slice& internal_key) {
  const VersionSet* vset = input_version_->vset_;
  // Scan to find earliest grandparent file that contains key.
  const InternalKeyComparator* icmp = &vset->icmp_;
  while (grandparent_index_ < grandparents_.size() &&
         icmp->Compare(internal_key,
                       grandparents_[grandparent_index_]->largest.Encode()) >
             0) {
    if (seen_key_) {
      overlapped_bytes_ += grandparents_[grandparent_index_]->file_size;
    }
    grandparent_index_++;
  }
  seen_key_ = true;

  if (overlapped_bytes_ > MaxGrandParentOverlapBytes(vset->options_)) {
    // Too much overlap for current output; start new output
    overlapped_bytes_ = 0;
    return true;
  } else {
    return false;
  }
}

void Compaction::ReleaseInputs() {
  if (input_version_ != nullptr) {
    input_version_->Unref();
    input_version_ = nullptr;
  }
}

}  // namespace leveldb