aboutsummaryrefslogtreecommitdiff
path: root/db/db_iter.cc
blob: 3b2035e9e3c2dce2b895d2f7fd03df646c166eb7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "db/db_iter.h"

#include "db/filename.h"
#include "db/db_impl.h"
#include "db/dbformat.h"
#include "leveldb/env.h"
#include "leveldb/iterator.h"
#include "port/port.h"
#include "util/logging.h"
#include "util/mutexlock.h"
#include "util/random.h"

namespace leveldb {

#if 0
static void DumpInternalIter(Iterator* iter) {
  for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
    ParsedInternalKey k;
    if (!ParseInternalKey(iter->key(), &k)) {
      fprintf(stderr, "Corrupt '%s'\n", EscapeString(iter->key()).c_str());
    } else {
      fprintf(stderr, "@ '%s'\n", k.DebugString().c_str());
    }
  }
}
#endif

namespace {

// Memtables and sstables that make the DB representation contain
// (userkey,seq,type) => uservalue entries.  DBIter
// combines multiple entries for the same userkey found in the DB
// representation into a single entry while accounting for sequence
// numbers, deletion markers, overwrites, etc.
class DBIter: public Iterator {
 public:
  // Which direction is the iterator currently moving?
  // (1) When moving forward, the internal iterator is positioned at
  //     the exact entry that yields this->key(), this->value()
  // (2) When moving backwards, the internal iterator is positioned
  //     just before all entries whose user key == this->key().
  enum Direction {
    kForward,
    kReverse
  };

  DBIter(DBImpl* db, const Comparator* cmp, Iterator* iter, SequenceNumber s,
         uint32_t seed)
      : db_(db),
        user_comparator_(cmp),
        iter_(iter),
        sequence_(s),
        direction_(kForward),
        valid_(false),
        rnd_(seed),
        bytes_counter_(RandomPeriod()) {
  }
  virtual ~DBIter() {
    delete iter_;
  }
  virtual bool Valid() const { return valid_; }
  virtual Slice key() const {
    assert(valid_);
    return (direction_ == kForward) ? ExtractUserKey(iter_->key()) : saved_key_;
  }
  virtual Slice value() const {
    assert(valid_);
    return (direction_ == kForward) ? iter_->value() : saved_value_;
  }
  virtual Status status() const {
    if (status_.ok()) {
      return iter_->status();
    } else {
      return status_;
    }
  }

  virtual void Next();
  virtual void Prev();
  virtual void Seek(const Slice& target);
  virtual void SeekToFirst();
  virtual void SeekToLast();

 private:
  void FindNextUserEntry(bool skipping, std::string* skip);
  void FindPrevUserEntry();
  bool ParseKey(ParsedInternalKey* key);

  inline void SaveKey(const Slice& k, std::string* dst) {
    dst->assign(k.data(), k.size());
  }

  inline void ClearSavedValue() {
    if (saved_value_.capacity() > 1048576) {
      std::string empty;
      swap(empty, saved_value_);
    } else {
      saved_value_.clear();
    }
  }

  // Pick next gap with average value of config::kReadBytesPeriod.
  ssize_t RandomPeriod() {
    return rnd_.Uniform(2*config::kReadBytesPeriod);
  }

  DBImpl* db_;
  const Comparator* const user_comparator_;
  Iterator* const iter_;
  SequenceNumber const sequence_;

  Status status_;
  std::string saved_key_;     // == current key when direction_==kReverse
  std::string saved_value_;   // == current raw value when direction_==kReverse
  Direction direction_;
  bool valid_;

  Random rnd_;
  ssize_t bytes_counter_;

  // No copying allowed
  DBIter(const DBIter&);
  void operator=(const DBIter&);
};

inline bool DBIter::ParseKey(ParsedInternalKey* ikey) {
  Slice k = iter_->key();
  ssize_t n = k.size() + iter_->value().size();
  bytes_counter_ -= n;
  while (bytes_counter_ < 0) {
    bytes_counter_ += RandomPeriod();
    db_->RecordReadSample(k);
  }
  if (!ParseInternalKey(k, ikey)) {
    status_ = Status::Corruption("corrupted internal key in DBIter");
    return false;
  } else {
    return true;
  }
}

void DBIter::Next() {
  assert(valid_);

  if (direction_ == kReverse) {  // Switch directions?
    direction_ = kForward;
    // iter_ is pointing just before the entries for this->key(),
    // so advance into the range of entries for this->key() and then
    // use the normal skipping code below.
    if (!iter_->Valid()) {
      iter_->SeekToFirst();
    } else {
      iter_->Next();
    }
    if (!iter_->Valid()) {
      valid_ = false;
      saved_key_.clear();
      return;
    }
    // saved_key_ already contains the key to skip past.
  } else {
    // Store in saved_key_ the current key so we skip it below.
    SaveKey(ExtractUserKey(iter_->key()), &saved_key_);
  }

  FindNextUserEntry(true, &saved_key_);
}

void DBIter::FindNextUserEntry(bool skipping, std::string* skip) {
  // Loop until we hit an acceptable entry to yield
  assert(iter_->Valid());
  assert(direction_ == kForward);
  do {
    ParsedInternalKey ikey;
    if (ParseKey(&ikey) && ikey.sequence <= sequence_) {
      switch (ikey.type) {
        case kTypeDeletion:
          // Arrange to skip all upcoming entries for this key since
          // they are hidden by this deletion.
          SaveKey(ikey.user_key, skip);
          skipping = true;
          break;
        case kTypeValue:
          if (skipping &&
              user_comparator_->Compare(ikey.user_key, *skip) <= 0) {
            // Entry hidden
          } else {
            valid_ = true;
            saved_key_.clear();
            return;
          }
          break;
      }
    }
    iter_->Next();
  } while (iter_->Valid());
  saved_key_.clear();
  valid_ = false;
}

void DBIter::Prev() {
  assert(valid_);

  if (direction_ == kForward) {  // Switch directions?
    // iter_ is pointing at the current entry.  Scan backwards until
    // the key changes so we can use the normal reverse scanning code.
    assert(iter_->Valid());  // Otherwise valid_ would have been false
    SaveKey(ExtractUserKey(iter_->key()), &saved_key_);
    while (true) {
      iter_->Prev();
      if (!iter_->Valid()) {
        valid_ = false;
        saved_key_.clear();
        ClearSavedValue();
        return;
      }
      if (user_comparator_->Compare(ExtractUserKey(iter_->key()),
                                    saved_key_) < 0) {
        break;
      }
    }
    direction_ = kReverse;
  }

  FindPrevUserEntry();
}

void DBIter::FindPrevUserEntry() {
  assert(direction_ == kReverse);

  ValueType value_type = kTypeDeletion;
  if (iter_->Valid()) {
    do {
      ParsedInternalKey ikey;
      if (ParseKey(&ikey) && ikey.sequence <= sequence_) {
        if ((value_type != kTypeDeletion) &&
            user_comparator_->Compare(ikey.user_key, saved_key_) < 0) {
          // We encountered a non-deleted value in entries for previous keys,
          break;
        }
        value_type = ikey.type;
        if (value_type == kTypeDeletion) {
          saved_key_.clear();
          ClearSavedValue();
        } else {
          Slice raw_value = iter_->value();
          if (saved_value_.capacity() > raw_value.size() + 1048576) {
            std::string empty;
            swap(empty, saved_value_);
          }
          SaveKey(ExtractUserKey(iter_->key()), &saved_key_);
          saved_value_.assign(raw_value.data(), raw_value.size());
        }
      }
      iter_->Prev();
    } while (iter_->Valid());
  }

  if (value_type == kTypeDeletion) {
    // End
    valid_ = false;
    saved_key_.clear();
    ClearSavedValue();
    direction_ = kForward;
  } else {
    valid_ = true;
  }
}

void DBIter::Seek(const Slice& target) {
  direction_ = kForward;
  ClearSavedValue();
  saved_key_.clear();
  AppendInternalKey(
      &saved_key_, ParsedInternalKey(target, sequence_, kValueTypeForSeek));
  iter_->Seek(saved_key_);
  if (iter_->Valid()) {
    FindNextUserEntry(false, &saved_key_ /* temporary storage */);
  } else {
    valid_ = false;
  }
}

void DBIter::SeekToFirst() {
  direction_ = kForward;
  ClearSavedValue();
  iter_->SeekToFirst();
  if (iter_->Valid()) {
    FindNextUserEntry(false, &saved_key_ /* temporary storage */);
  } else {
    valid_ = false;
  }
}

void DBIter::SeekToLast() {
  direction_ = kReverse;
  ClearSavedValue();
  iter_->SeekToLast();
  FindPrevUserEntry();
}

}  // anonymous namespace

Iterator* NewDBIterator(
    DBImpl* db,
    const Comparator* user_key_comparator,
    Iterator* internal_iter,
    SequenceNumber sequence,
    uint32_t seed) {
  return new DBIter(db, user_key_comparator, internal_iter, sequence, seed);
}

}  // namespace leveldb