aboutsummaryrefslogtreecommitdiff
path: root/db/db_bench.cc
blob: 7a0f5e08cdd58672ee69527bcbef72ac869c9189 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include "db/db_impl.h"
#include "db/version_set.h"
#include "leveldb/cache.h"
#include "leveldb/db.h"
#include "leveldb/env.h"
#include "leveldb/write_batch.h"
#include "port/port.h"
#include "util/crc32c.h"
#include "util/histogram.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/testutil.h"

// Comma-separated list of operations to run in the specified order
//   Actual benchmarks:
//      fillseq       -- write N values in sequential key order in async mode
//      fillrandom    -- write N values in random key order in async mode
//      overwrite     -- overwrite N values in random key order in async mode
//      fillsync      -- write N/100 values in random key order in sync mode
//      fill100K      -- write N/1000 100K values in random order in async mode
//      deleteseq     -- delete N keys in sequential order
//      deleterandom  -- delete N keys in random order
//      readseq       -- read N times sequentially
//      readreverse   -- read N times in reverse order
//      readrandom    -- read N times in random order
//      readmissing   -- read N missing keys in random order
//      readhot       -- read N times in random order from 1% section of DB
//      seekrandom    -- N random seeks
//      open          -- cost of opening a DB
//      crc32c        -- repeated crc32c of 4K of data
//      acquireload   -- load N*1000 times
//   Meta operations:
//      compact     -- Compact the entire DB
//      stats       -- Print DB stats
//      sstables    -- Print sstable info
//      heapprofile -- Dump a heap profile (if supported by this port)
static const char* FLAGS_benchmarks =
    "fillseq,"
    "fillsync,"
    "fillrandom,"
    "overwrite,"
    "readrandom,"
    "readrandom,"  // Extra run to allow previous compactions to quiesce
    "readseq,"
    "readreverse,"
    "compact,"
    "readrandom,"
    "readseq,"
    "readreverse,"
    "fill100K,"
    "crc32c,"
    "snappycomp,"
    "snappyuncomp,"
    "acquireload,"
    ;

// Number of key/values to place in database
static int FLAGS_num = 1000000;

// Number of read operations to do.  If negative, do FLAGS_num reads.
static int FLAGS_reads = -1;

// Number of concurrent threads to run.
static int FLAGS_threads = 1;

// Size of each value
static int FLAGS_value_size = 100;

// Arrange to generate values that shrink to this fraction of
// their original size after compression
static double FLAGS_compression_ratio = 0.5;

// Print histogram of operation timings
static bool FLAGS_histogram = false;

// Number of bytes to buffer in memtable before compacting
// (initialized to default value by "main")
static int FLAGS_write_buffer_size = 0;

// Number of bytes to use as a cache of uncompressed data.
// Negative means use default settings.
static int FLAGS_cache_size = -1;

// Maximum number of files to keep open at the same time (use default if == 0)
static int FLAGS_open_files = 0;

// Bloom filter bits per key.
// Negative means use default settings.
static int FLAGS_bloom_bits = -1;

// If true, do not destroy the existing database.  If you set this
// flag and also specify a benchmark that wants a fresh database, that
// benchmark will fail.
static bool FLAGS_use_existing_db = false;

// If true, reuse existing log/MANIFEST files when re-opening a database.
static bool FLAGS_reuse_logs = false;

// Use the db with the following name.
static const char* FLAGS_db = NULL;

namespace leveldb {

namespace {

// Helper for quickly generating random data.
class RandomGenerator {
 private:
  std::string data_;
  int pos_;

 public:
  RandomGenerator() {
    // We use a limited amount of data over and over again and ensure
    // that it is larger than the compression window (32KB), and also
    // large enough to serve all typical value sizes we want to write.
    Random rnd(301);
    std::string piece;
    while (data_.size() < 1048576) {
      // Add a short fragment that is as compressible as specified
      // by FLAGS_compression_ratio.
      test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
      data_.append(piece);
    }
    pos_ = 0;
  }

  Slice Generate(size_t len) {
    if (pos_ + len > data_.size()) {
      pos_ = 0;
      assert(len < data_.size());
    }
    pos_ += len;
    return Slice(data_.data() + pos_ - len, len);
  }
};

#if defined(__linux)
static Slice TrimSpace(Slice s) {
  size_t start = 0;
  while (start < s.size() && isspace(s[start])) {
    start++;
  }
  size_t limit = s.size();
  while (limit > start && isspace(s[limit-1])) {
    limit--;
  }
  return Slice(s.data() + start, limit - start);
}
#endif

static void AppendWithSpace(std::string* str, Slice msg) {
  if (msg.empty()) return;
  if (!str->empty()) {
    str->push_back(' ');
  }
  str->append(msg.data(), msg.size());
}

class Stats {
 private:
  double start_;
  double finish_;
  double seconds_;
  int done_;
  int next_report_;
  int64_t bytes_;
  double last_op_finish_;
  Histogram hist_;
  std::string message_;

 public:
  Stats() { Start(); }

  void Start() {
    next_report_ = 100;
    last_op_finish_ = start_;
    hist_.Clear();
    done_ = 0;
    bytes_ = 0;
    seconds_ = 0;
    start_ = Env::Default()->NowMicros();
    finish_ = start_;
    message_.clear();
  }

  void Merge(const Stats& other) {
    hist_.Merge(other.hist_);
    done_ += other.done_;
    bytes_ += other.bytes_;
    seconds_ += other.seconds_;
    if (other.start_ < start_) start_ = other.start_;
    if (other.finish_ > finish_) finish_ = other.finish_;

    // Just keep the messages from one thread
    if (message_.empty()) message_ = other.message_;
  }

  void Stop() {
    finish_ = Env::Default()->NowMicros();
    seconds_ = (finish_ - start_) * 1e-6;
  }

  void AddMessage(Slice msg) {
    AppendWithSpace(&message_, msg);
  }

  void FinishedSingleOp() {
    if (FLAGS_histogram) {
      double now = Env::Default()->NowMicros();
      double micros = now - last_op_finish_;
      hist_.Add(micros);
      if (micros > 20000) {
        fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
        fflush(stderr);
      }
      last_op_finish_ = now;
    }

    done_++;
    if (done_ >= next_report_) {
      if      (next_report_ < 1000)   next_report_ += 100;
      else if (next_report_ < 5000)   next_report_ += 500;
      else if (next_report_ < 10000)  next_report_ += 1000;
      else if (next_report_ < 50000)  next_report_ += 5000;
      else if (next_report_ < 100000) next_report_ += 10000;
      else if (next_report_ < 500000) next_report_ += 50000;
      else                            next_report_ += 100000;
      fprintf(stderr, "... finished %d ops%30s\r", done_, "");
      fflush(stderr);
    }
  }

  void AddBytes(int64_t n) {
    bytes_ += n;
  }

  void Report(const Slice& name) {
    // Pretend at least one op was done in case we are running a benchmark
    // that does not call FinishedSingleOp().
    if (done_ < 1) done_ = 1;

    std::string extra;
    if (bytes_ > 0) {
      // Rate is computed on actual elapsed time, not the sum of per-thread
      // elapsed times.
      double elapsed = (finish_ - start_) * 1e-6;
      char rate[100];
      snprintf(rate, sizeof(rate), "%6.1f MB/s",
               (bytes_ / 1048576.0) / elapsed);
      extra = rate;
    }
    AppendWithSpace(&extra, message_);

    fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n",
            name.ToString().c_str(),
            seconds_ * 1e6 / done_,
            (extra.empty() ? "" : " "),
            extra.c_str());
    if (FLAGS_histogram) {
      fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
    }
    fflush(stdout);
  }
};

// State shared by all concurrent executions of the same benchmark.
struct SharedState {
  port::Mutex mu;
  port::CondVar cv;
  int total;

  // Each thread goes through the following states:
  //    (1) initializing
  //    (2) waiting for others to be initialized
  //    (3) running
  //    (4) done

  int num_initialized;
  int num_done;
  bool start;

  SharedState() : cv(&mu) { }
};

// Per-thread state for concurrent executions of the same benchmark.
struct ThreadState {
  int tid;             // 0..n-1 when running in n threads
  Random rand;         // Has different seeds for different threads
  Stats stats;
  SharedState* shared;

  ThreadState(int index)
      : tid(index),
        rand(1000 + index) {
  }
};

}  // namespace

class Benchmark {
 private:
  Cache* cache_;
  const FilterPolicy* filter_policy_;
  DB* db_;
  int num_;
  int value_size_;
  int entries_per_batch_;
  WriteOptions write_options_;
  int reads_;
  int heap_counter_;

  void PrintHeader() {
    const int kKeySize = 16;
    PrintEnvironment();
    fprintf(stdout, "Keys:       %d bytes each\n", kKeySize);
    fprintf(stdout, "Values:     %d bytes each (%d bytes after compression)\n",
            FLAGS_value_size,
            static_cast<int>(FLAGS_value_size * FLAGS_compression_ratio + 0.5));
    fprintf(stdout, "Entries:    %d\n", num_);
    fprintf(stdout, "RawSize:    %.1f MB (estimated)\n",
            ((static_cast<int64_t>(kKeySize + FLAGS_value_size) * num_)
             / 1048576.0));
    fprintf(stdout, "FileSize:   %.1f MB (estimated)\n",
            (((kKeySize + FLAGS_value_size * FLAGS_compression_ratio) * num_)
             / 1048576.0));
    PrintWarnings();
    fprintf(stdout, "------------------------------------------------\n");
  }

  void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
    fprintf(stdout,
            "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n"
            );
#endif
#ifndef NDEBUG
    fprintf(stdout,
            "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif

    // See if snappy is working by attempting to compress a compressible string
    const char text[] = "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy";
    std::string compressed;
    if (!port::Snappy_Compress(text, sizeof(text), &compressed)) {
      fprintf(stdout, "WARNING: Snappy compression is not enabled\n");
    } else if (compressed.size() >= sizeof(text)) {
      fprintf(stdout, "WARNING: Snappy compression is not effective\n");
    }
  }

  void PrintEnvironment() {
    fprintf(stderr, "LevelDB:    version %d.%d\n",
            kMajorVersion, kMinorVersion);

#if defined(__linux)
    time_t now = time(NULL);
    fprintf(stderr, "Date:       %s", ctime(&now));  // ctime() adds newline

    FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
    if (cpuinfo != NULL) {
      char line[1000];
      int num_cpus = 0;
      std::string cpu_type;
      std::string cache_size;
      while (fgets(line, sizeof(line), cpuinfo) != NULL) {
        const char* sep = strchr(line, ':');
        if (sep == NULL) {
          continue;
        }
        Slice key = TrimSpace(Slice(line, sep - 1 - line));
        Slice val = TrimSpace(Slice(sep + 1));
        if (key == "model name") {
          ++num_cpus;
          cpu_type = val.ToString();
        } else if (key == "cache size") {
          cache_size = val.ToString();
        }
      }
      fclose(cpuinfo);
      fprintf(stderr, "CPU:        %d * %s\n", num_cpus, cpu_type.c_str());
      fprintf(stderr, "CPUCache:   %s\n", cache_size.c_str());
    }
#endif
  }

 public:
  Benchmark()
  : cache_(FLAGS_cache_size >= 0 ? NewLRUCache(FLAGS_cache_size) : NULL),
    filter_policy_(FLAGS_bloom_bits >= 0
                   ? NewBloomFilterPolicy(FLAGS_bloom_bits)
                   : NULL),
    db_(NULL),
    num_(FLAGS_num),
    value_size_(FLAGS_value_size),
    entries_per_batch_(1),
    reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
    heap_counter_(0) {
    std::vector<std::string> files;
    Env::Default()->GetChildren(FLAGS_db, &files);
    for (size_t i = 0; i < files.size(); i++) {
      if (Slice(files[i]).starts_with("heap-")) {
        Env::Default()->DeleteFile(std::string(FLAGS_db) + "/" + files[i]);
      }
    }
    if (!FLAGS_use_existing_db) {
      DestroyDB(FLAGS_db, Options());
    }
  }

  ~Benchmark() {
    delete db_;
    delete cache_;
    delete filter_policy_;
  }

  void Run() {
    PrintHeader();
    Open();

    const char* benchmarks = FLAGS_benchmarks;
    while (benchmarks != NULL) {
      const char* sep = strchr(benchmarks, ',');
      Slice name;
      if (sep == NULL) {
        name = benchmarks;
        benchmarks = NULL;
      } else {
        name = Slice(benchmarks, sep - benchmarks);
        benchmarks = sep + 1;
      }

      // Reset parameters that may be overridden below
      num_ = FLAGS_num;
      reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads);
      value_size_ = FLAGS_value_size;
      entries_per_batch_ = 1;
      write_options_ = WriteOptions();

      void (Benchmark::*method)(ThreadState*) = NULL;
      bool fresh_db = false;
      int num_threads = FLAGS_threads;

      if (name == Slice("open")) {
        method = &Benchmark::OpenBench;
        num_ /= 10000;
        if (num_ < 1) num_ = 1;
      } else if (name == Slice("fillseq")) {
        fresh_db = true;
        method = &Benchmark::WriteSeq;
      } else if (name == Slice("fillbatch")) {
        fresh_db = true;
        entries_per_batch_ = 1000;
        method = &Benchmark::WriteSeq;
      } else if (name == Slice("fillrandom")) {
        fresh_db = true;
        method = &Benchmark::WriteRandom;
      } else if (name == Slice("overwrite")) {
        fresh_db = false;
        method = &Benchmark::WriteRandom;
      } else if (name == Slice("fillsync")) {
        fresh_db = true;
        num_ /= 1000;
        write_options_.sync = true;
        method = &Benchmark::WriteRandom;
      } else if (name == Slice("fill100K")) {
        fresh_db = true;
        num_ /= 1000;
        value_size_ = 100 * 1000;
        method = &Benchmark::WriteRandom;
      } else if (name == Slice("readseq")) {
        method = &Benchmark::ReadSequential;
      } else if (name == Slice("readreverse")) {
        method = &Benchmark::ReadReverse;
      } else if (name == Slice("readrandom")) {
        method = &Benchmark::ReadRandom;
      } else if (name == Slice("readmissing")) {
        method = &Benchmark::ReadMissing;
      } else if (name == Slice("seekrandom")) {
        method = &Benchmark::SeekRandom;
      } else if (name == Slice("readhot")) {
        method = &Benchmark::ReadHot;
      } else if (name == Slice("readrandomsmall")) {
        reads_ /= 1000;
        method = &Benchmark::ReadRandom;
      } else if (name == Slice("deleteseq")) {
        method = &Benchmark::DeleteSeq;
      } else if (name == Slice("deleterandom")) {
        method = &Benchmark::DeleteRandom;
      } else if (name == Slice("readwhilewriting")) {
        num_threads++;  // Add extra thread for writing
        method = &Benchmark::ReadWhileWriting;
      } else if (name == Slice("compact")) {
        method = &Benchmark::Compact;
      } else if (name == Slice("crc32c")) {
        method = &Benchmark::Crc32c;
      } else if (name == Slice("acquireload")) {
        method = &Benchmark::AcquireLoad;
      } else if (name == Slice("snappycomp")) {
        method = &Benchmark::SnappyCompress;
      } else if (name == Slice("snappyuncomp")) {
        method = &Benchmark::SnappyUncompress;
      } else if (name == Slice("heapprofile")) {
        HeapProfile();
      } else if (name == Slice("stats")) {
        PrintStats("leveldb.stats");
      } else if (name == Slice("sstables")) {
        PrintStats("leveldb.sstables");
      } else {
        if (name != Slice()) {  // No error message for empty name
          fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str());
        }
      }

      if (fresh_db) {
        if (FLAGS_use_existing_db) {
          fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n",
                  name.ToString().c_str());
          method = NULL;
        } else {
          delete db_;
          db_ = NULL;
          DestroyDB(FLAGS_db, Options());
          Open();
        }
      }

      if (method != NULL) {
        RunBenchmark(num_threads, name, method);
      }
    }
  }

 private:
  struct ThreadArg {
    Benchmark* bm;
    SharedState* shared;
    ThreadState* thread;
    void (Benchmark::*method)(ThreadState*);
  };

  static void ThreadBody(void* v) {
    ThreadArg* arg = reinterpret_cast<ThreadArg*>(v);
    SharedState* shared = arg->shared;
    ThreadState* thread = arg->thread;
    {
      MutexLock l(&shared->mu);
      shared->num_initialized++;
      if (shared->num_initialized >= shared->total) {
        shared->cv.SignalAll();
      }
      while (!shared->start) {
        shared->cv.Wait();
      }
    }

    thread->stats.Start();
    (arg->bm->*(arg->method))(thread);
    thread->stats.Stop();

    {
      MutexLock l(&shared->mu);
      shared->num_done++;
      if (shared->num_done >= shared->total) {
        shared->cv.SignalAll();
      }
    }
  }

  void RunBenchmark(int n, Slice name,
                    void (Benchmark::*method)(ThreadState*)) {
    SharedState shared;
    shared.total = n;
    shared.num_initialized = 0;
    shared.num_done = 0;
    shared.start = false;

    ThreadArg* arg = new ThreadArg[n];
    for (int i = 0; i < n; i++) {
      arg[i].bm = this;
      arg[i].method = method;
      arg[i].shared = &shared;
      arg[i].thread = new ThreadState(i);
      arg[i].thread->shared = &shared;
      Env::Default()->StartThread(ThreadBody, &arg[i]);
    }

    shared.mu.Lock();
    while (shared.num_initialized < n) {
      shared.cv.Wait();
    }

    shared.start = true;
    shared.cv.SignalAll();
    while (shared.num_done < n) {
      shared.cv.Wait();
    }
    shared.mu.Unlock();

    for (int i = 1; i < n; i++) {
      arg[0].thread->stats.Merge(arg[i].thread->stats);
    }
    arg[0].thread->stats.Report(name);

    for (int i = 0; i < n; i++) {
      delete arg[i].thread;
    }
    delete[] arg;
  }

  void Crc32c(ThreadState* thread) {
    // Checksum about 500MB of data total
    const int size = 4096;
    const char* label = "(4K per op)";
    std::string data(size, 'x');
    int64_t bytes = 0;
    uint32_t crc = 0;
    while (bytes < 500 * 1048576) {
      crc = crc32c::Value(data.data(), size);
      thread->stats.FinishedSingleOp();
      bytes += size;
    }
    // Print so result is not dead
    fprintf(stderr, "... crc=0x%x\r", static_cast<unsigned int>(crc));

    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(label);
  }

  void AcquireLoad(ThreadState* thread) {
    int dummy;
    port::AtomicPointer ap(&dummy);
    int count = 0;
    void *ptr = NULL;
    thread->stats.AddMessage("(each op is 1000 loads)");
    while (count < 100000) {
      for (int i = 0; i < 1000; i++) {
        ptr = ap.Acquire_Load();
      }
      count++;
      thread->stats.FinishedSingleOp();
    }
    if (ptr == NULL) exit(1); // Disable unused variable warning.
  }

  void SnappyCompress(ThreadState* thread) {
    RandomGenerator gen;
    Slice input = gen.Generate(Options().block_size);
    int64_t bytes = 0;
    int64_t produced = 0;
    bool ok = true;
    std::string compressed;
    while (ok && bytes < 1024 * 1048576) {  // Compress 1G
      ok = port::Snappy_Compress(input.data(), input.size(), &compressed);
      produced += compressed.size();
      bytes += input.size();
      thread->stats.FinishedSingleOp();
    }

    if (!ok) {
      thread->stats.AddMessage("(snappy failure)");
    } else {
      char buf[100];
      snprintf(buf, sizeof(buf), "(output: %.1f%%)",
               (produced * 100.0) / bytes);
      thread->stats.AddMessage(buf);
      thread->stats.AddBytes(bytes);
    }
  }

  void SnappyUncompress(ThreadState* thread) {
    RandomGenerator gen;
    Slice input = gen.Generate(Options().block_size);
    std::string compressed;
    bool ok = port::Snappy_Compress(input.data(), input.size(), &compressed);
    int64_t bytes = 0;
    char* uncompressed = new char[input.size()];
    while (ok && bytes < 1024 * 1048576) {  // Compress 1G
      ok =  port::Snappy_Uncompress(compressed.data(), compressed.size(),
                                    uncompressed);
      bytes += input.size();
      thread->stats.FinishedSingleOp();
    }
    delete[] uncompressed;

    if (!ok) {
      thread->stats.AddMessage("(snappy failure)");
    } else {
      thread->stats.AddBytes(bytes);
    }
  }

  void Open() {
    assert(db_ == NULL);
    Options options;
    options.create_if_missing = !FLAGS_use_existing_db;
    options.block_cache = cache_;
    options.write_buffer_size = FLAGS_write_buffer_size;
    options.max_open_files = FLAGS_open_files;
    options.filter_policy = filter_policy_;
    options.reuse_logs = FLAGS_reuse_logs;
    Status s = DB::Open(options, FLAGS_db, &db_);
    if (!s.ok()) {
      fprintf(stderr, "open error: %s\n", s.ToString().c_str());
      exit(1);
    }
  }

  void OpenBench(ThreadState* thread) {
    for (int i = 0; i < num_; i++) {
      delete db_;
      Open();
      thread->stats.FinishedSingleOp();
    }
  }

  void WriteSeq(ThreadState* thread) {
    DoWrite(thread, true);
  }

  void WriteRandom(ThreadState* thread) {
    DoWrite(thread, false);
  }

  void DoWrite(ThreadState* thread, bool seq) {
    if (num_ != FLAGS_num) {
      char msg[100];
      snprintf(msg, sizeof(msg), "(%d ops)", num_);
      thread->stats.AddMessage(msg);
    }

    RandomGenerator gen;
    WriteBatch batch;
    Status s;
    int64_t bytes = 0;
    for (int i = 0; i < num_; i += entries_per_batch_) {
      batch.Clear();
      for (int j = 0; j < entries_per_batch_; j++) {
        const int k = seq ? i+j : (thread->rand.Next() % FLAGS_num);
        char key[100];
        snprintf(key, sizeof(key), "%016d", k);
        batch.Put(key, gen.Generate(value_size_));
        bytes += value_size_ + strlen(key);
        thread->stats.FinishedSingleOp();
      }
      s = db_->Write(write_options_, &batch);
      if (!s.ok()) {
        fprintf(stderr, "put error: %s\n", s.ToString().c_str());
        exit(1);
      }
    }
    thread->stats.AddBytes(bytes);
  }

  void ReadSequential(ThreadState* thread) {
    Iterator* iter = db_->NewIterator(ReadOptions());
    int i = 0;
    int64_t bytes = 0;
    for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) {
      bytes += iter->key().size() + iter->value().size();
      thread->stats.FinishedSingleOp();
      ++i;
    }
    delete iter;
    thread->stats.AddBytes(bytes);
  }

  void ReadReverse(ThreadState* thread) {
    Iterator* iter = db_->NewIterator(ReadOptions());
    int i = 0;
    int64_t bytes = 0;
    for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) {
      bytes += iter->key().size() + iter->value().size();
      thread->stats.FinishedSingleOp();
      ++i;
    }
    delete iter;
    thread->stats.AddBytes(bytes);
  }

  void ReadRandom(ThreadState* thread) {
    ReadOptions options;
    std::string value;
    int found = 0;
    for (int i = 0; i < reads_; i++) {
      char key[100];
      const int k = thread->rand.Next() % FLAGS_num;
      snprintf(key, sizeof(key), "%016d", k);
      if (db_->Get(options, key, &value).ok()) {
        found++;
      }
      thread->stats.FinishedSingleOp();
    }
    char msg[100];
    snprintf(msg, sizeof(msg), "(%d of %d found)", found, num_);
    thread->stats.AddMessage(msg);
  }

  void ReadMissing(ThreadState* thread) {
    ReadOptions options;
    std::string value;
    for (int i = 0; i < reads_; i++) {
      char key[100];
      const int k = thread->rand.Next() % FLAGS_num;
      snprintf(key, sizeof(key), "%016d.", k);
      db_->Get(options, key, &value);
      thread->stats.FinishedSingleOp();
    }
  }

  void ReadHot(ThreadState* thread) {
    ReadOptions options;
    std::string value;
    const int range = (FLAGS_num + 99) / 100;
    for (int i = 0; i < reads_; i++) {
      char key[100];
      const int k = thread->rand.Next() % range;
      snprintf(key, sizeof(key), "%016d", k);
      db_->Get(options, key, &value);
      thread->stats.FinishedSingleOp();
    }
  }

  void SeekRandom(ThreadState* thread) {
    ReadOptions options;
    int found = 0;
    for (int i = 0; i < reads_; i++) {
      Iterator* iter = db_->NewIterator(options);
      char key[100];
      const int k = thread->rand.Next() % FLAGS_num;
      snprintf(key, sizeof(key), "%016d", k);
      iter->Seek(key);
      if (iter->Valid() && iter->key() == key) found++;
      delete iter;
      thread->stats.FinishedSingleOp();
    }
    char msg[100];
    snprintf(msg, sizeof(msg), "(%d of %d found)", found, num_);
    thread->stats.AddMessage(msg);
  }

  void DoDelete(ThreadState* thread, bool seq) {
    RandomGenerator gen;
    WriteBatch batch;
    Status s;
    for (int i = 0; i < num_; i += entries_per_batch_) {
      batch.Clear();
      for (int j = 0; j < entries_per_batch_; j++) {
        const int k = seq ? i+j : (thread->rand.Next() % FLAGS_num);
        char key[100];
        snprintf(key, sizeof(key), "%016d", k);
        batch.Delete(key);
        thread->stats.FinishedSingleOp();
      }
      s = db_->Write(write_options_, &batch);
      if (!s.ok()) {
        fprintf(stderr, "del error: %s\n", s.ToString().c_str());
        exit(1);
      }
    }
  }

  void DeleteSeq(ThreadState* thread) {
    DoDelete(thread, true);
  }

  void DeleteRandom(ThreadState* thread) {
    DoDelete(thread, false);
  }

  void ReadWhileWriting(ThreadState* thread) {
    if (thread->tid > 0) {
      ReadRandom(thread);
    } else {
      // Special thread that keeps writing until other threads are done.
      RandomGenerator gen;
      while (true) {
        {
          MutexLock l(&thread->shared->mu);
          if (thread->shared->num_done + 1 >= thread->shared->num_initialized) {
            // Other threads have finished
            break;
          }
        }

        const int k = thread->rand.Next() % FLAGS_num;
        char key[100];
        snprintf(key, sizeof(key), "%016d", k);
        Status s = db_->Put(write_options_, key, gen.Generate(value_size_));
        if (!s.ok()) {
          fprintf(stderr, "put error: %s\n", s.ToString().c_str());
          exit(1);
        }
      }

      // Do not count any of the preceding work/delay in stats.
      thread->stats.Start();
    }
  }

  void Compact(ThreadState* thread) {
    db_->CompactRange(NULL, NULL);
  }

  void PrintStats(const char* key) {
    std::string stats;
    if (!db_->GetProperty(key, &stats)) {
      stats = "(failed)";
    }
    fprintf(stdout, "\n%s\n", stats.c_str());
  }

  static void WriteToFile(void* arg, const char* buf, int n) {
    reinterpret_cast<WritableFile*>(arg)->Append(Slice(buf, n));
  }

  void HeapProfile() {
    char fname[100];
    snprintf(fname, sizeof(fname), "%s/heap-%04d", FLAGS_db, ++heap_counter_);
    WritableFile* file;
    Status s = Env::Default()->NewWritableFile(fname, &file);
    if (!s.ok()) {
      fprintf(stderr, "%s\n", s.ToString().c_str());
      return;
    }
    bool ok = port::GetHeapProfile(WriteToFile, file);
    delete file;
    if (!ok) {
      fprintf(stderr, "heap profiling not supported\n");
      Env::Default()->DeleteFile(fname);
    }
  }
};

}  // namespace leveldb

int main(int argc, char** argv) {
  FLAGS_write_buffer_size = leveldb::Options().write_buffer_size;
  FLAGS_open_files = leveldb::Options().max_open_files;
  std::string default_db_path;

  for (int i = 1; i < argc; i++) {
    double d;
    int n;
    char junk;
    if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) {
      FLAGS_benchmarks = argv[i] + strlen("--benchmarks=");
    } else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) {
      FLAGS_compression_ratio = d;
    } else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_histogram = n;
    } else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_use_existing_db = n;
    } else if (sscanf(argv[i], "--reuse_logs=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_reuse_logs = n;
    } else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) {
      FLAGS_num = n;
    } else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) {
      FLAGS_reads = n;
    } else if (sscanf(argv[i], "--threads=%d%c", &n, &junk) == 1) {
      FLAGS_threads = n;
    } else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
      FLAGS_value_size = n;
    } else if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) {
      FLAGS_write_buffer_size = n;
    } else if (sscanf(argv[i], "--cache_size=%d%c", &n, &junk) == 1) {
      FLAGS_cache_size = n;
    } else if (sscanf(argv[i], "--bloom_bits=%d%c", &n, &junk) == 1) {
      FLAGS_bloom_bits = n;
    } else if (sscanf(argv[i], "--open_files=%d%c", &n, &junk) == 1) {
      FLAGS_open_files = n;
    } else if (strncmp(argv[i], "--db=", 5) == 0) {
      FLAGS_db = argv[i] + 5;
    } else {
      fprintf(stderr, "Invalid flag '%s'\n", argv[i]);
      exit(1);
    }
  }

  // Choose a location for the test database if none given with --db=<path>
  if (FLAGS_db == NULL) {
      leveldb::Env::Default()->GetTestDirectory(&default_db_path);
      default_db_path += "/dbbench";
      FLAGS_db = default_db_path.c_str();
  }

  leveldb::Benchmark benchmark;
  benchmark.Run();
  return 0;
}