aboutsummaryrefslogtreecommitdiff
path: root/core/include/base58.h
blob: 580bd3fc63b38300ade9a0c17f186a06f4efb921 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.


//
// Why base-58 instead of standard base-64 encoding?
// - Don't want 0OIl characters that look the same in some fonts and
//      could be used to create visually identical looking account numbers.
// - A string with non-alphanumeric characters is not as easily accepted as an account number.
// - E-mail usually won't line-break if there's no punctuation to break at.
// - Doubleclicking selects the whole number as one word if it's all alphanumeric.
//
#ifndef BITCOIN_BASE58_H
#define BITCOIN_BASE58_H

#include <string>
#include <vector>
#include "bignum.h"

static const char* pszBase58 = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";


inline std::string EncodeBase58(const unsigned char* pbegin, const unsigned char* pend)
{
    CAutoBN_CTX pctx;
    CBigNum bn58 = 58;
    CBigNum bn0 = 0;

    // Convert big endian data to little endian
    // Extra zero at the end make sure bignum will interpret as a positive number
    std::vector<unsigned char> vchTmp(pend-pbegin+1, 0);
    reverse_copy(pbegin, pend, vchTmp.begin());

    // Convert little endian data to bignum
    CBigNum bn;
    bn.setvch(vchTmp);

    // Convert bignum to std::string
    std::string str;
    str.reserve((pend - pbegin) * 138 / 100 + 1);
    CBigNum dv;
    CBigNum rem;
    while (bn > bn0)
    {
        if (!BN_div(&dv, &rem, &bn, &bn58, pctx))
            throw bignum_error("EncodeBase58 : BN_div failed");
        bn = dv;
        unsigned int c = rem.getulong();
        str += pszBase58[c];
    }

    // Leading zeroes encoded as base58 zeros
    for (const unsigned char* p = pbegin; p < pend && *p == 0; p++)
        str += pszBase58[0];

    // Convert little endian std::string to big endian
    reverse(str.begin(), str.end());
    return str;
}

inline std::string EncodeBase58(const std::vector<unsigned char>& vch)
{
    return EncodeBase58(&vch[0], &vch[0] + vch.size());
}

inline bool DecodeBase58(const char* psz, std::vector<unsigned char>& vchRet)
{
    CAutoBN_CTX pctx;
    vchRet.clear();
    CBigNum bn58 = 58;
    CBigNum bn = 0;
    CBigNum bnChar;
    while (isspace(*psz))
        psz++;

    // Convert big endian string to bignum
    for (const char* p = psz; *p; p++)
    {
        const char* p1 = strchr(pszBase58, *p);
        if (p1 == NULL)
        {
            while (isspace(*p))
                p++;
            if (*p != '\0')
                return false;
            break;
        }
        bnChar.setulong(p1 - pszBase58);
        if (!BN_mul(&bn, &bn, &bn58, pctx))
            throw bignum_error("DecodeBase58 : BN_mul failed");
        bn += bnChar;
    }

    // Get bignum as little endian data
    std::vector<unsigned char> vchTmp = bn.getvch();

    // Trim off sign byte if present
    if (vchTmp.size() >= 2 && vchTmp.end()[-1] == 0 && vchTmp.end()[-2] >= 0x80)
        vchTmp.erase(vchTmp.end()-1);

    // Restore leading zeros
    int nLeadingZeros = 0;
    for (const char* p = psz; *p == pszBase58[0]; p++)
        nLeadingZeros++;
    vchRet.assign(nLeadingZeros + vchTmp.size(), 0);

    // Convert little endian data to big endian
    reverse_copy(vchTmp.begin(), vchTmp.end(), vchRet.end() - vchTmp.size());
    return true;
}

inline bool DecodeBase58(const std::string& str, std::vector<unsigned char>& vchRet)
{
    return DecodeBase58(str.c_str(), vchRet);
}





inline std::string EncodeBase58Check(const std::vector<unsigned char>& vchIn)
{
    // add 4-byte hash check to the end
    std::vector<unsigned char> vch(vchIn);
    uint256 hash = Hash(vch.begin(), vch.end());
    vch.insert(vch.end(), (unsigned char*)&hash, (unsigned char*)&hash + 4);
    return EncodeBase58(vch);
}

inline bool DecodeBase58Check(const char* psz, std::vector<unsigned char>& vchRet)
{
    if (!DecodeBase58(psz, vchRet))
        return false;
    if (vchRet.size() < 4)
    {
        vchRet.clear();
        return false;
    }
    uint256 hash = Hash(vchRet.begin(), vchRet.end()-4);
    if (memcmp(&hash, &vchRet.end()[-4], 4) != 0)
    {
        vchRet.clear();
        return false;
    }
    vchRet.resize(vchRet.size()-4);
    return true;
}

inline bool DecodeBase58Check(const std::string& str, std::vector<unsigned char>& vchRet)
{
    return DecodeBase58Check(str.c_str(), vchRet);
}






#define ADDRESSVERSION   ((unsigned char)(fTestNet ? 111 : 0))

inline std::string Hash160ToAddress(uint160 hash160)
{
    // add 1-byte version number to the front
    std::vector<unsigned char> vch(1, ADDRESSVERSION);
    vch.insert(vch.end(), UBEGIN(hash160), UEND(hash160));
    return EncodeBase58Check(vch);
}

inline bool AddressToHash160(const char* psz, uint160& hash160Ret)
{
    std::vector<unsigned char> vch;
    if (!DecodeBase58Check(psz, vch))
        return false;
    if (vch.empty())
        return false;
    unsigned char nVersion = vch[0];
    if (vch.size() != sizeof(hash160Ret) + 1)
        return false;
    memcpy(&hash160Ret, &vch[1], sizeof(hash160Ret));
    return (nVersion <= ADDRESSVERSION);
}

inline bool AddressToHash160(const std::string& str, uint160& hash160Ret)
{
    return AddressToHash160(str.c_str(), hash160Ret);
}

inline bool IsValidBitcoinAddress(const char* psz)
{
    uint160 hash160;
    return AddressToHash160(psz, hash160);
}

inline bool IsValidBitcoinAddress(const std::string& str)
{
    return IsValidBitcoinAddress(str.c_str());
}




inline std::string PubKeyToAddress(const std::vector<unsigned char>& vchPubKey)
{
    return Hash160ToAddress(Hash160(vchPubKey));
}

#endif