1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
#!/usr/bin/env python3
# Copyright (c) 2015-2020 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
'''
Perform basic security checks on a series of executables.
Exit status will be 0 if successful, and the program will be silent.
Otherwise the exit status will be 1 and it will log which executables failed which checks.
'''
import sys
from typing import List, Optional
import lief
import pixie
def check_ELF_PIE(executable) -> bool:
'''
Check for position independent executable (PIE), allowing for address space randomization.
'''
elf = pixie.load(executable)
return elf.hdr.e_type == pixie.ET_DYN
def check_ELF_NX(executable) -> bool:
'''
Check that no sections are writable and executable (including the stack)
'''
elf = pixie.load(executable)
have_wx = False
have_gnu_stack = False
for ph in elf.program_headers:
if ph.p_type == pixie.PT_GNU_STACK:
have_gnu_stack = True
if (ph.p_flags & pixie.PF_W) != 0 and (ph.p_flags & pixie.PF_X) != 0: # section is both writable and executable
have_wx = True
return have_gnu_stack and not have_wx
def check_ELF_RELRO(executable) -> bool:
'''
Check for read-only relocations.
GNU_RELRO program header must exist
Dynamic section must have BIND_NOW flag
'''
elf = pixie.load(executable)
have_gnu_relro = False
for ph in elf.program_headers:
# Note: not checking p_flags == PF_R: here as linkers set the permission differently
# This does not affect security: the permission flags of the GNU_RELRO program
# header are ignored, the PT_LOAD header determines the effective permissions.
# However, the dynamic linker need to write to this area so these are RW.
# Glibc itself takes care of mprotecting this area R after relocations are finished.
# See also https://marc.info/?l=binutils&m=1498883354122353
if ph.p_type == pixie.PT_GNU_RELRO:
have_gnu_relro = True
have_bindnow = False
for flags in elf.query_dyn_tags(pixie.DT_FLAGS):
assert isinstance(flags, int)
if flags & pixie.DF_BIND_NOW:
have_bindnow = True
return have_gnu_relro and have_bindnow
def check_ELF_Canary(executable) -> bool:
'''
Check for use of stack canary
'''
elf = pixie.load(executable)
ok = False
for symbol in elf.dyn_symbols:
if symbol.name == b'__stack_chk_fail':
ok = True
return ok
def check_ELF_separate_code(executable):
'''
Check that sections are appropriately separated in virtual memory,
based on their permissions. This checks for missing -Wl,-z,separate-code
and potentially other problems.
'''
elf = pixie.load(executable)
R = pixie.PF_R
W = pixie.PF_W
E = pixie.PF_X
EXPECTED_FLAGS = {
# Read + execute
b'.init': R | E,
b'.plt': R | E,
b'.plt.got': R | E,
b'.plt.sec': R | E,
b'.text': R | E,
b'.fini': R | E,
# Read-only data
b'.interp': R,
b'.note.gnu.property': R,
b'.note.gnu.build-id': R,
b'.note.ABI-tag': R,
b'.gnu.hash': R,
b'.dynsym': R,
b'.dynstr': R,
b'.gnu.version': R,
b'.gnu.version_r': R,
b'.rela.dyn': R,
b'.rela.plt': R,
b'.rodata': R,
b'.eh_frame_hdr': R,
b'.eh_frame': R,
b'.qtmetadata': R,
b'.gcc_except_table': R,
b'.stapsdt.base': R,
# Writable data
b'.init_array': R | W,
b'.fini_array': R | W,
b'.dynamic': R | W,
b'.got': R | W,
b'.data': R | W,
b'.bss': R | W,
}
if elf.hdr.e_machine == pixie.EM_PPC64:
# .plt is RW on ppc64 even with separate-code
EXPECTED_FLAGS[b'.plt'] = R | W
# For all LOAD program headers get mapping to the list of sections,
# and for each section, remember the flags of the associated program header.
flags_per_section = {}
for ph in elf.program_headers:
if ph.p_type == pixie.PT_LOAD:
for section in ph.sections:
assert(section.name not in flags_per_section)
flags_per_section[section.name] = ph.p_flags
# Spot-check ELF LOAD program header flags per section
# If these sections exist, check them against the expected R/W/E flags
for (section, flags) in flags_per_section.items():
if section in EXPECTED_FLAGS:
if EXPECTED_FLAGS[section] != flags:
return False
return True
def check_PE_DYNAMIC_BASE(executable) -> bool:
'''PIE: DllCharacteristics bit 0x40 signifies dynamicbase (ASLR)'''
binary = lief.parse(executable)
return lief.PE.DLL_CHARACTERISTICS.DYNAMIC_BASE in binary.optional_header.dll_characteristics_lists
# Must support high-entropy 64-bit address space layout randomization
# in addition to DYNAMIC_BASE to have secure ASLR.
def check_PE_HIGH_ENTROPY_VA(executable) -> bool:
'''PIE: DllCharacteristics bit 0x20 signifies high-entropy ASLR'''
binary = lief.parse(executable)
return lief.PE.DLL_CHARACTERISTICS.HIGH_ENTROPY_VA in binary.optional_header.dll_characteristics_lists
def check_PE_RELOC_SECTION(executable) -> bool:
'''Check for a reloc section. This is required for functional ASLR.'''
binary = lief.parse(executable)
return binary.has_relocations
def check_MACHO_NOUNDEFS(executable) -> bool:
'''
Check for no undefined references.
'''
binary = lief.parse(executable)
return binary.header.has(lief.MachO.HEADER_FLAGS.NOUNDEFS)
def check_MACHO_LAZY_BINDINGS(executable) -> bool:
'''
Check for no lazy bindings.
We don't use or check for MH_BINDATLOAD. See #18295.
'''
binary = lief.parse(executable)
return binary.dyld_info.lazy_bind == (0,0)
def check_MACHO_Canary(executable) -> bool:
'''
Check for use of stack canary
'''
binary = lief.parse(executable)
return binary.has_symbol('___stack_chk_fail')
def check_PIE(executable) -> bool:
'''
Check for position independent executable (PIE),
allowing for address space randomization.
'''
binary = lief.parse(executable)
return binary.is_pie
def check_NX(executable) -> bool:
'''
Check for no stack execution
'''
binary = lief.parse(executable)
return binary.has_nx
CHECKS = {
'ELF': [
('PIE', check_ELF_PIE),
('NX', check_ELF_NX),
('RELRO', check_ELF_RELRO),
('Canary', check_ELF_Canary),
('separate_code', check_ELF_separate_code),
],
'PE': [
('PIE', check_PIE),
('DYNAMIC_BASE', check_PE_DYNAMIC_BASE),
('HIGH_ENTROPY_VA', check_PE_HIGH_ENTROPY_VA),
('NX', check_NX),
('RELOC_SECTION', check_PE_RELOC_SECTION)
],
'MACHO': [
('PIE', check_PIE),
('NOUNDEFS', check_MACHO_NOUNDEFS),
('NX', check_NX),
('LAZY_BINDINGS', check_MACHO_LAZY_BINDINGS),
('Canary', check_MACHO_Canary)
]
}
def identify_executable(executable) -> Optional[str]:
with open(filename, 'rb') as f:
magic = f.read(4)
if magic.startswith(b'MZ'):
return 'PE'
elif magic.startswith(b'\x7fELF'):
return 'ELF'
elif magic.startswith(b'\xcf\xfa'):
return 'MACHO'
return None
if __name__ == '__main__':
retval: int = 0
for filename in sys.argv[1:]:
try:
etype = identify_executable(filename)
if etype is None:
print(f'{filename}: unknown format')
retval = 1
continue
failed: List[str] = []
for (name, func) in CHECKS[etype]:
if not func(filename):
failed.append(name)
if failed:
print(f'{filename}: failed {" ".join(failed)}')
retval = 1
except IOError:
print(f'{filename}: cannot open')
retval = 1
sys.exit(retval)
|