Age | Commit message (Collapse) | Author |
|
|
|
Remove the nType and nVersion as parameters to all serialization methods
and functions. There is only one place where it's read and has an impact
(in CAddress), and even there it does not impact any of the recursively
invoked serializers.
Instead, the few places that need nType or nVersion are changed to read
it directly from the stream object, through GetType() and GetVersion()
methods which are added to all stream classes.
|
|
Also add a variadic CDataStream ctor for ease-of-use.
|
|
The current tests for varint only check that
serialization-deserialization is a roundtrip. That is a useful test, but
it is also good to check for some exact bit patterns, to prevent a code
change that changes the serialization format from going undetected.
As the varint functions are templated, also check with different types.
|
|
|
|
Make sure that chainparams and logging is properly initialized. Doing
this for every test may be overkill, but this initialization is so
simple that that does not matter.
This should fix the travis issues.
|
|
|
|
Serialization type-safety and endianness compatibility.
|
|
|
|
serialization now has no dependencies.
|
|
- Add license headers to source files (years based on commit dates)
in `src/test` as well as `qa`
- Add `README.md` to `src/test/data` specifying MIT license
Fixes #3848
|
|
platform.
Instead, use have an exception object to check if the string returned by what() on the raised exception matches the string returned by what() on the expected exception instance.
This way, we do not need to list all different possible explanatory strings for different platforms in the test code, and make it simple. (The idea is by Cory Fields.)
|
|
Before the fix, there were 6 errors such as :
serialize_tests.cpp:77: error in "noncanonical": incorrect exception std::ios_base::failure is caught
It turns out that ex.what() returns following string instead of "non-canonical ReadCompactSize()"
"non-canonical ReadCompactSize(): unspecified iostream_category error"
After the fix, unit test passed.
The test ran using Apple LLVM v5.0 on OSX 10.9 and the unit test error happened because of different error messages by different compilers.
g++ --version on my development environment.
```
Configured with: --prefix=/Applications/Xcode.app/Contents/Developer/usr --with-gxx-include-dir=/usr/include/c++/4.2.1
Apple LLVM version 5.0 (clang-500.2.79) (based on LLVM 3.3svn)
Target: x86_64-apple-darwin13.0.0
Thread model: posix
```
|
|
Use misc methods of avoiding unnecesary header includes.
Replace int typedefs with int##_t from stdint.h.
Replace PRI64[xdu] with PRI[xdu]64 from inttypes.h.
Normalize QT_VERSION ifs where possible.
Resolve some indirect dependencies as direct ones.
Remove extern declarations from .cpp files.
|
|
Changed CDataStream::GetAndClear() to use the most obvious
get get and clear instead of a tricky swap().
Added a unit test for CDataStream insert/erase/GetAndClear.
Note: GetAndClear() is not performance critical, it is used only
by the send-a-message-to-the-network code. Bug was not noticed
before now because the send-a-message code never erased from the
stream.
|
|
The length of vectors, maps, sets, etc are serialized using
Write/ReadCompactSize -- which, unfortunately, do not use a
unique encoding.
So deserializing and then re-serializing a transaction (for example)
can give you different bits than you started with. That doesn't
cause any problems that we are aware of, but it is exactly the type
of subtle mismatch that can lead to exploits.
With this pull, reading a non-canonical CompactSize throws an
exception, which means nodes will ignore 'tx' or 'block' or
other messages that are not properly encoded.
Please check my logic... but this change is safe with respect to
causing a network split. Old clients that receive
non-canonically-encoded transactions or blocks deserialize
them into CTransaction/CBlock structures in memory, and then
re-serialize them before relaying them to peers.
And please check my logic with respect to causing a blockchain
split: there are no CompactSize fields in the block header, so
the block hash is always canonical. The merkle root in the block
header is computed on a vector<CTransaction>, so
any non-canonical encoding of the transactions in 'tx' or 'block'
messages is erased as they are read into memory by old clients,
and does not affect the block hash. And, as noted above, old
clients re-serialize (with canonical encoding) 'tx' and 'block'
messages before relaying to peers.
|
|
|
|
Variable-length integers: bytes are a MSB base-128 encoding of the number.
The high bit in each byte signifies whether another digit follows. To make
the encoding is one-to-one, one is subtracted from all but the last digit.
Thus, the byte sequence a[] with length len, where all but the last byte
has bit 128 set, encodes the number:
(a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
Properties:
* Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
* Every integer has exactly one encoding
* Encoding does not depend on size of original integer type
|