aboutsummaryrefslogtreecommitdiff
path: root/src/bench/rollingbloom.cpp
AgeCommit message (Collapse)Author
2020-12-31scripted-diff: Bump copyright headersMarcoFalke
-BEGIN VERIFY SCRIPT- ./contrib/devtools/copyright_header.py update ./ -END VERIFY SCRIPT-
2020-06-13Replace current benchmarking framework with nanobenchMartin Ankerl
This replaces the current benchmarking framework with nanobench [1], an MIT licensed single-header benchmarking library, of which I am the autor. This has in my opinion several advantages, especially on Linux: * fast: Running all benchmarks takes ~6 seconds instead of 4m13s on an Intel i7-8700 CPU @ 3.20GHz. * accurate: I ran e.g. the benchmark for SipHash_32b 10 times and calculate standard deviation / mean = coefficient of variation: * 0.57% CV for old benchmarking framework * 0.20% CV for nanobench So the benchmark results with nanobench seem to vary less than with the old framework. * It automatically determines runtime based on clock precision, no need to specify number of evaluations. * measure instructions, cycles, branches, instructions per cycle, branch misses (only Linux, when performance counters are available) * output in markdown table format. * Warn about unstable environment (frequency scaling, turbo, ...) * For better profiling, it is possible to set the environment variable NANOBENCH_ENDLESS to force endless running of a particular benchmark without the need to recompile. This makes it to e.g. run "perf top" and look at hotspots. Here is an example copy & pasted from the terminal output: | ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark |--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:---------- | 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160` | 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1` | 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256` | 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024` | 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b` | 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512` [1] https://github.com/martinus/nanobench * Adds support for asymptotes This adds support to calculate asymptotic complexity of a benchmark. This is similar to #17375, but currently only one asymptote is supported, and I have added support in the benchmark `ComplexMemPool` as an example. Usage is e.g. like this: ``` ./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800 ``` This runs the benchmark `ComplexMemPool` several times but with different complexityN settings. The benchmark can extract that number and use it accordingly. Here, it's used for `childTxs`. The output is this: | complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark |------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:---------- | 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool` | 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool` | 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool` | 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool` | 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool` | 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool` | 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool` | coefficient | err% | complexity |--------------:|-------:|------------ | 4.78486e-07 | 4.5% | O(n^2) | 6.38557e-10 | 21.7% | O(n^3) | 3.42338e-05 | 38.0% | O(n log n) | 0.000313914 | 46.9% | O(n) | 0.0129823 | 114.4% | O(log n) | 0.0815055 | 133.8% | O(1) The best fitting curve is O(n^2), so the algorithm seems to scale quadratic with `childTxs` in the range 25 to 800.
2019-12-30scripted-diff: Bump copyright of files changed in 2019MarcoFalke
-BEGIN VERIFY SCRIPT- ./contrib/devtools/copyright_header.py update ./ -END VERIFY SCRIPT-
2019-10-15Remove unused includespracticalswift
2019-05-22bench: Add benchmark for CRollingBloomFilter::resetJoão Barbosa
2018-08-27Merge #13767: Remove redundant assignments (dead stores)MarcoFalke
dd777f3e12 Remove unused variable (practicalswift) cdf4089457 Remove redundant assignments (dead stores) (practicalswift) Pull request description: Remove redundant assignments (dead stores). Tree-SHA512: e852059b22a161c34a0f18a6a6ed798e2b35e6d2b9f23c526af0ec33e01f6a5bb1fa5ada6671ba183d7b02393ff0d397be5aa4b4e2edbd5e604c9a76ac48d249
2018-08-02Remove redundant assignments (dead stores)practicalswift
2018-07-27Update copyright headers to 2018DrahtBot
2018-01-03Increment MIT Licence copyright header year on files modified in 2017Akira Takizawa
2017-12-23Improved microbenchmarking with multiple features.Martin Ankerl
* inline performance critical code * Average runtime is specified and used to calculate iterations. * Console: show median of multiple runs * plot: show box plot * filter benchmarks * specify scaling factor * ignore src/test and src/bench in command line check script * number of iterations instead of time * Replaced runtime in BENCHMARK makro number of iterations. * Added -? to bench_bitcoin * Benchmark plotly.js URL, width, height can be customized * Fixed incorrect precision warning
2017-11-16scripted-diff: Replace #include "" with #include <> (ryanofsky)MeshCollider
-BEGIN VERIFY SCRIPT- for f in \ src/*.cpp \ src/*.h \ src/bench/*.cpp \ src/bench/*.h \ src/compat/*.cpp \ src/compat/*.h \ src/consensus/*.cpp \ src/consensus/*.h \ src/crypto/*.cpp \ src/crypto/*.h \ src/crypto/ctaes/*.h \ src/policy/*.cpp \ src/policy/*.h \ src/primitives/*.cpp \ src/primitives/*.h \ src/qt/*.cpp \ src/qt/*.h \ src/qt/test/*.cpp \ src/qt/test/*.h \ src/rpc/*.cpp \ src/rpc/*.h \ src/script/*.cpp \ src/script/*.h \ src/support/*.cpp \ src/support/*.h \ src/support/allocators/*.h \ src/test/*.cpp \ src/test/*.h \ src/wallet/*.cpp \ src/wallet/*.h \ src/wallet/test/*.cpp \ src/wallet/test/*.h \ src/zmq/*.cpp \ src/zmq/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT-
2017-11-07bench: switch to std::chrono for time measurementsCory Fields
std::chrono removes portability issues. Rather than storing doubles, store the untouched time_points. Then convert to nanoseconds for display. This allows for maximum precision, while keeping results comparable between differing hardware/operating systems. Also, display full nanosecond counts rather than sub-second floats.
2016-04-28Benchmark rolling bloom filterPieter Wuille