aboutsummaryrefslogtreecommitdiff
path: root/src/tests.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/tests.c')
-rw-r--r--src/tests.c651
1 files changed, 407 insertions, 244 deletions
diff --git a/src/tests.c b/src/tests.c
index cff32f1d06..f7f1acac64 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -36,12 +36,12 @@ void random_field_element_test(secp256k1_fe_t *fe) {
}
void random_field_element_magnitude(secp256k1_fe_t *fe) {
+ secp256k1_fe_t zero;
int n = secp256k1_rand32() % 9;
secp256k1_fe_normalize(fe);
if (n == 0) {
return;
}
- secp256k1_fe_t zero;
secp256k1_fe_clear(&zero);
secp256k1_fe_negate(&zero, &zero, 0);
secp256k1_fe_mul_int(&zero, n - 1);
@@ -61,14 +61,15 @@ void random_group_element_test(secp256k1_ge_t *ge) {
}
void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge_t *ge) {
+ secp256k1_fe_t z2, z3;
do {
random_field_element_test(&gej->z);
if (!secp256k1_fe_is_zero(&gej->z)) {
break;
}
} while(1);
- secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &gej->z);
- secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &z2, &gej->z);
+ secp256k1_fe_sqr(&z2, &gej->z);
+ secp256k1_fe_mul(&z3, &z2, &gej->z);
secp256k1_fe_mul(&gej->x, &ge->x, &z2);
secp256k1_fe_mul(&gej->y, &ge->y, &z3);
gej->infinity = ge->infinity;
@@ -77,8 +78,8 @@ void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge
void random_scalar_order_test(secp256k1_scalar_t *num) {
do {
unsigned char b32[32];
- secp256k1_rand256_test(b32);
int overflow = 0;
+ secp256k1_rand256_test(b32);
secp256k1_scalar_set_b32(num, b32, &overflow);
if (overflow || secp256k1_scalar_is_zero(num))
continue;
@@ -89,8 +90,8 @@ void random_scalar_order_test(secp256k1_scalar_t *num) {
void random_scalar_order(secp256k1_scalar_t *num) {
do {
unsigned char b32[32];
- secp256k1_rand256(b32);
int overflow = 0;
+ secp256k1_rand256(b32);
secp256k1_scalar_set_b32(num, b32, &overflow);
if (overflow || secp256k1_scalar_is_zero(num))
continue;
@@ -117,16 +118,17 @@ void run_sha256_tests(void) {
{0xf0, 0x8a, 0x78, 0xcb, 0xba, 0xee, 0x08, 0x2b, 0x05, 0x2a, 0xe0, 0x70, 0x8f, 0x32, 0xfa, 0x1e, 0x50, 0xc5, 0xc4, 0x21, 0xaa, 0x77, 0x2b, 0xa5, 0xdb, 0xb4, 0x06, 0xa2, 0xea, 0x6b, 0xe3, 0x42},
{0xab, 0x64, 0xef, 0xf7, 0xe8, 0x8e, 0x2e, 0x46, 0x16, 0x5e, 0x29, 0xf2, 0xbc, 0xe4, 0x18, 0x26, 0xbd, 0x4c, 0x7b, 0x35, 0x52, 0xf6, 0xb3, 0x82, 0xa9, 0xe7, 0xd3, 0xaf, 0x47, 0xc2, 0x45, 0xf8}
};
- for (int i = 0; i < 8; i++) {
+ int i;
+ for (i = 0; i < 8; i++) {
+ unsigned char out[32];
secp256k1_sha256_t hasher;
secp256k1_sha256_initialize(&hasher);
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i]));
- unsigned char out[32];
secp256k1_sha256_finalize(&hasher, out);
CHECK(memcmp(out, outputs[i], 32) == 0);
if (strlen(inputs[i]) > 0) {
- secp256k1_sha256_initialize(&hasher);
int split = secp256k1_rand32() % strlen(inputs[i]);
+ secp256k1_sha256_initialize(&hasher);
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
secp256k1_sha256_finalize(&hasher, out);
@@ -160,16 +162,17 @@ void run_hmac_sha256_tests(void) {
{0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54},
{0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2}
};
- for (int i = 0; i < 6; i++) {
+ int i;
+ for (i = 0; i < 6; i++) {
secp256k1_hmac_sha256_t hasher;
+ unsigned char out[32];
secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i]));
- unsigned char out[32];
secp256k1_hmac_sha256_finalize(&hasher, out);
CHECK(memcmp(out, outputs[i], 32) == 0);
if (strlen(inputs[i]) > 0) {
- secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
int split = secp256k1_rand32() % strlen(inputs[i]);
+ secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
secp256k1_hmac_sha256_finalize(&hasher, out);
@@ -197,16 +200,25 @@ void run_rfc6979_hmac_sha256_tests(void) {
secp256k1_rfc6979_hmac_sha256_t rng;
unsigned char out[32];
+ unsigned char zero[1] = {0};
+ int i;
- secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32);
- for (int i = 0; i < 3; i++) {
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32, NULL, 1);
+ for (i = 0; i < 3; i++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
CHECK(memcmp(out, out1[i], 32) == 0);
}
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
- secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 32, msg2, 32);
- for (int i = 0; i < 3; i++) {
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32, zero, 1);
+ for (i = 0; i < 3; i++) {
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
+ CHECK(memcmp(out, out1[i], 32) != 0);
+ }
+ secp256k1_rfc6979_hmac_sha256_finalize(&rng);
+
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 32, msg2, 32, zero, 0);
+ for (i = 0; i < 3; i++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
CHECK(memcmp(out, out2[i], 32) == 0);
}
@@ -254,9 +266,10 @@ void test_num_negate(void) {
}
void test_num_add_sub(void) {
- int r = secp256k1_rand32();
secp256k1_num_t n1;
secp256k1_num_t n2;
+ secp256k1_num_t n1p2, n2p1, n1m2, n2m1;
+ int r = secp256k1_rand32();
random_num_order_test(&n1); /* n1 = R1 */
if (r & 1) {
random_num_negate(&n1);
@@ -265,7 +278,6 @@ void test_num_add_sub(void) {
if (r & 2) {
random_num_negate(&n2);
}
- secp256k1_num_t n1p2, n2p1, n1m2, n2m1;
secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */
secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */
secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */
@@ -283,7 +295,8 @@ void test_num_add_sub(void) {
}
void run_num_smalltests(void) {
- for (int i=0; i<100*count; i++) {
+ int i;
+ for (i = 0; i < 100*count; i++) {
test_num_negate();
test_num_add_sub();
}
@@ -293,41 +306,45 @@ void run_num_smalltests(void) {
/***** SCALAR TESTS *****/
void scalar_test(void) {
+ secp256k1_scalar_t s;
+ secp256k1_scalar_t s1;
+ secp256k1_scalar_t s2;
+#ifndef USE_NUM_NONE
+ secp256k1_num_t snum, s1num, s2num;
+ secp256k1_num_t order, half_order;
+#endif
unsigned char c[32];
/* Set 's' to a random scalar, with value 'snum'. */
- secp256k1_scalar_t s;
random_scalar_order_test(&s);
/* Set 's1' to a random scalar, with value 's1num'. */
- secp256k1_scalar_t s1;
random_scalar_order_test(&s1);
/* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
- secp256k1_scalar_t s2;
random_scalar_order_test(&s2);
secp256k1_scalar_get_b32(c, &s2);
#ifndef USE_NUM_NONE
- secp256k1_num_t snum, s1num, s2num;
secp256k1_scalar_get_num(&snum, &s);
secp256k1_scalar_get_num(&s1num, &s1);
secp256k1_scalar_get_num(&s2num, &s2);
- secp256k1_num_t order;
secp256k1_scalar_order_get_num(&order);
- secp256k1_num_t half_order = order;
+ half_order = order;
secp256k1_num_shift(&half_order, 1);
#endif
{
+ int i;
/* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
secp256k1_scalar_t n;
secp256k1_scalar_set_int(&n, 0);
- for (int i = 0; i < 256; i += 4) {
+ for (i = 0; i < 256; i += 4) {
secp256k1_scalar_t t;
+ int j;
secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
- for (int j = 0; j < 4; j++) {
+ for (j = 0; j < 4; j++) {
secp256k1_scalar_add(&n, &n, &n);
}
secp256k1_scalar_add(&n, &n, &t);
@@ -338,16 +355,17 @@ void scalar_test(void) {
{
/* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */
secp256k1_scalar_t n;
- secp256k1_scalar_set_int(&n, 0);
int i = 0;
+ secp256k1_scalar_set_int(&n, 0);
while (i < 256) {
+ secp256k1_scalar_t t;
+ int j;
int now = (secp256k1_rand32() % 15) + 1;
if (now + i > 256) {
now = 256 - i;
}
- secp256k1_scalar_t t;
secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now));
- for (int j = 0; j < now; j++) {
+ for (j = 0; j < now; j++) {
secp256k1_scalar_add(&n, &n, &n);
}
secp256k1_scalar_add(&n, &n, &t);
@@ -360,23 +378,23 @@ void scalar_test(void) {
{
/* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
secp256k1_num_t rnum;
+ secp256k1_num_t r2num;
+ secp256k1_scalar_t r;
secp256k1_num_add(&rnum, &snum, &s2num);
secp256k1_num_mod(&rnum, &order);
- secp256k1_scalar_t r;
secp256k1_scalar_add(&r, &s, &s2);
- secp256k1_num_t r2num;
secp256k1_scalar_get_num(&r2num, &r);
CHECK(secp256k1_num_eq(&rnum, &r2num));
}
{
/* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
+ secp256k1_scalar_t r;
+ secp256k1_num_t r2num;
secp256k1_num_t rnum;
secp256k1_num_mul(&rnum, &snum, &s2num);
secp256k1_num_mod(&rnum, &order);
- secp256k1_scalar_t r;
secp256k1_scalar_mul(&r, &s, &s2);
- secp256k1_num_t r2num;
secp256k1_scalar_get_num(&r2num, &r);
CHECK(secp256k1_num_eq(&rnum, &r2num));
/* The result can only be zero if at least one of the factors was zero. */
@@ -387,20 +405,20 @@ void scalar_test(void) {
}
{
+ secp256k1_scalar_t neg;
+ secp256k1_num_t negnum;
+ secp256k1_num_t negnum2;
/* Check that comparison with zero matches comparison with zero on the number. */
CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
/* Check that comparison with the half order is equal to testing for high scalar. */
CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0));
- secp256k1_scalar_t neg;
secp256k1_scalar_negate(&neg, &s);
- secp256k1_num_t negnum;
secp256k1_num_sub(&negnum, &order, &snum);
secp256k1_num_mod(&negnum, &order);
/* Check that comparison with the half order is equal to testing for high scalar after negation. */
CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0));
/* Negating should change the high property, unless the value was already zero. */
CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
- secp256k1_num_t negnum2;
secp256k1_scalar_get_num(&negnum2, &neg);
/* Negating a scalar should be equal to (order - n) mod order on the number. */
CHECK(secp256k1_num_eq(&negnum, &negnum2));
@@ -415,17 +433,17 @@ void scalar_test(void) {
{
/* Test secp256k1_scalar_mul_shift_var. */
secp256k1_scalar_t r;
+ secp256k1_num_t one;
+ secp256k1_num_t rnum;
+ secp256k1_num_t rnum2;
+ unsigned char cone[1] = {0x01};
unsigned int shift = 256 + (secp256k1_rand32() % 257);
secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift);
- secp256k1_num_t rnum;
secp256k1_num_mul(&rnum, &s1num, &s2num);
secp256k1_num_shift(&rnum, shift - 1);
- secp256k1_num_t one;
- unsigned char cone[1] = {0x01};
secp256k1_num_set_bin(&one, cone, 1);
secp256k1_num_add(&rnum, &rnum, &one);
secp256k1_num_shift(&rnum, 1);
- secp256k1_num_t rnum2;
secp256k1_scalar_get_num(&rnum2, &r);
CHECK(secp256k1_num_eq(&rnum, &rnum2));
}
@@ -435,11 +453,13 @@ void scalar_test(void) {
/* Test that scalar inverses are equal to the inverse of their number modulo the order. */
if (!secp256k1_scalar_is_zero(&s)) {
secp256k1_scalar_t inv;
- secp256k1_scalar_inverse(&inv, &s);
#ifndef USE_NUM_NONE
secp256k1_num_t invnum;
- secp256k1_num_mod_inverse(&invnum, &snum, &order);
secp256k1_num_t invnum2;
+#endif
+ secp256k1_scalar_inverse(&inv, &s);
+#ifndef USE_NUM_NONE
+ secp256k1_num_mod_inverse(&invnum, &snum, &order);
secp256k1_scalar_get_num(&invnum2, &inv);
CHECK(secp256k1_num_eq(&invnum, &invnum2));
#endif
@@ -461,15 +481,18 @@ void scalar_test(void) {
}
{
+ secp256k1_scalar_t r1, r2;
+ secp256k1_scalar_t b;
+ int i;
/* Test add_bit. */
int bit = secp256k1_rand32() % 256;
- secp256k1_scalar_t b;
secp256k1_scalar_set_int(&b, 1);
CHECK(secp256k1_scalar_is_one(&b));
- for (int i = 0; i < bit; i++) {
+ for (i = 0; i < bit; i++) {
secp256k1_scalar_add(&b, &b, &b);
}
- secp256k1_scalar_t r1 = s1, r2 = s1;
+ r1 = s1;
+ r2 = s1;
if (!secp256k1_scalar_add(&r1, &r1, &b)) {
/* No overflow happened. */
secp256k1_scalar_add_bit(&r2, bit);
@@ -551,7 +574,8 @@ void scalar_test(void) {
}
void run_scalar_tests(void) {
- for (int i = 0; i < 128 * count; i++) {
+ int i;
+ for (i = 0; i < 128 * count; i++) {
scalar_test();
}
@@ -571,11 +595,11 @@ void run_scalar_tests(void) {
{
/* A scalar with value of the curve order should be 0. */
secp256k1_num_t order;
- secp256k1_scalar_order_get_num(&order);
- unsigned char bin[32];
- secp256k1_num_get_bin(bin, 32, &order);
secp256k1_scalar_t zero;
+ unsigned char bin[32];
int overflow = 0;
+ secp256k1_scalar_order_get_num(&order);
+ secp256k1_num_get_bin(bin, 32, &order);
secp256k1_scalar_set_b32(&zero, bin, &overflow);
CHECK(overflow == 1);
CHECK(secp256k1_scalar_is_zero(&zero));
@@ -608,39 +632,67 @@ void random_fe_non_zero(secp256k1_fe_t *nz) {
}
void random_fe_non_square(secp256k1_fe_t *ns) {
- random_fe_non_zero(ns);
secp256k1_fe_t r;
+ random_fe_non_zero(ns);
if (secp256k1_fe_sqrt_var(&r, ns)) {
secp256k1_fe_negate(ns, ns, 1);
}
}
int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
- secp256k1_fe_t an = *a; secp256k1_fe_normalize_weak(&an);
- secp256k1_fe_t bn = *b; secp256k1_fe_normalize_var(&bn);
+ secp256k1_fe_t an = *a;
+ secp256k1_fe_t bn = *b;
+ secp256k1_fe_normalize_weak(&an);
+ secp256k1_fe_normalize_var(&bn);
return secp256k1_fe_equal_var(&an, &bn);
}
int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) {
- secp256k1_fe_t x; secp256k1_fe_mul(&x, a, ai);
- secp256k1_fe_t one; secp256k1_fe_set_int(&one, 1);
+ secp256k1_fe_t x;
+ secp256k1_fe_t one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_fe_mul(&x, a, ai);
return check_fe_equal(&x, &one);
}
-void run_field_misc(void) {
- const unsigned char f32_5[32] = {
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05,
+void run_field_convert(void) {
+ static const unsigned char b32[32] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
+ 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
+ 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40
};
+ static const secp256k1_fe_storage_t fes = SECP256K1_FE_STORAGE_CONST(
+ 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
+ 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
+ );
+ static const secp256k1_fe_t fe = SECP256K1_FE_CONST(
+ 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
+ 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
+ );
+ secp256k1_fe_t fe2;
+ unsigned char b322[32];
+ secp256k1_fe_storage_t fes2;
+ /* Check conversions to fe. */
+ CHECK(secp256k1_fe_set_b32(&fe2, b32));
+ CHECK(secp256k1_fe_equal_var(&fe, &fe2));
+ secp256k1_fe_from_storage(&fe2, &fes);
+ CHECK(secp256k1_fe_equal_var(&fe, &fe2));
+ /* Check conversion from fe. */
+ secp256k1_fe_get_b32(b322, &fe);
+ CHECK(memcmp(b322, b32, 32) == 0);
+ secp256k1_fe_to_storage(&fes2, &fe);
+ CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0);
+}
+
+void run_field_misc(void) {
secp256k1_fe_t x;
secp256k1_fe_t y;
secp256k1_fe_t z;
secp256k1_fe_t q;
- secp256k1_fe_t fe5;
- CHECK(secp256k1_fe_set_b32(&fe5, f32_5));
- for (int i=0; i<5*count; i++) {
+ secp256k1_fe_t fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5);
+ int i;
+ for (i = 0; i < 5*count; i++) {
+ secp256k1_fe_storage_t xs, ys, zs;
random_fe(&x);
random_fe_non_zero(&y);
/* Test the fe equality and comparison operations. */
@@ -649,12 +701,17 @@ void run_field_misc(void) {
z = x;
secp256k1_fe_add(&z,&y);
secp256k1_fe_normalize(&z);
- /* Test the conditional move. */
- secp256k1_fe_cmov(&z, &x, 0);
- CHECK(secp256k1_fe_equal_var(&x, &z) == 0);
- CHECK(secp256k1_fe_cmp_var(&x, &z) != 0);
- secp256k1_fe_cmov(&y, &x, 1);
- CHECK(secp256k1_fe_equal_var(&x, &y));
+ /* Test storage conversion and conditional moves. */
+ secp256k1_fe_to_storage(&xs, &x);
+ secp256k1_fe_to_storage(&ys, &y);
+ secp256k1_fe_to_storage(&zs, &z);
+ secp256k1_fe_storage_cmov(&zs, &xs, 0);
+ CHECK(memcmp(&xs, &zs, sizeof(xs)) != 0);
+ secp256k1_fe_storage_cmov(&ys, &xs, 1);
+ CHECK(memcmp(&xs, &ys, sizeof(xs)) == 0);
+ secp256k1_fe_from_storage(&x, &xs);
+ secp256k1_fe_from_storage(&y, &ys);
+ secp256k1_fe_from_storage(&z, &zs);
/* Test that mul_int, mul, and add agree. */
secp256k1_fe_add(&y, &x);
secp256k1_fe_add(&y, &x);
@@ -678,7 +735,8 @@ void run_field_misc(void) {
void run_field_inv(void) {
secp256k1_fe_t x, xi, xii;
- for (int i=0; i<10*count; i++) {
+ int i;
+ for (i = 0; i < 10*count; i++) {
random_fe_non_zero(&x);
secp256k1_fe_inv(&xi, &x);
CHECK(check_fe_inverse(&x, &xi));
@@ -689,7 +747,8 @@ void run_field_inv(void) {
void run_field_inv_var(void) {
secp256k1_fe_t x, xi, xii;
- for (int i=0; i<10*count; i++) {
+ int i;
+ for (i = 0; i < 10*count; i++) {
random_fe_non_zero(&x);
secp256k1_fe_inv_var(&xi, &x);
CHECK(check_fe_inverse(&x, &xi));
@@ -700,17 +759,19 @@ void run_field_inv_var(void) {
void run_field_inv_all_var(void) {
secp256k1_fe_t x[16], xi[16], xii[16];
+ int i;
/* Check it's safe to call for 0 elements */
secp256k1_fe_inv_all_var(0, xi, x);
- for (int i=0; i<count; i++) {
+ for (i = 0; i < count; i++) {
+ size_t j;
size_t len = (secp256k1_rand32() & 15) + 1;
- for (size_t j=0; j<len; j++)
+ for (j = 0; j < len; j++)
random_fe_non_zero(&x[j]);
secp256k1_fe_inv_all_var(len, xi, x);
- for (size_t j=0; j<len; j++)
+ for (j = 0; j < len; j++)
CHECK(check_fe_inverse(&x[j], &xi[j]));
secp256k1_fe_inv_all_var(len, xii, xi);
- for (size_t j=0; j<len; j++)
+ for (j = 0; j < len; j++)
CHECK(check_fe_equal(&x[j], &xii[j]));
}
}
@@ -719,10 +780,11 @@ void run_sqr(void) {
secp256k1_fe_t x, s;
{
+ int i;
secp256k1_fe_set_int(&x, 1);
secp256k1_fe_negate(&x, &x, 1);
- for (int i=1; i<=512; ++i) {
+ for (i = 1; i <= 512; ++i) {
secp256k1_fe_mul_int(&x, 2);
secp256k1_fe_normalize(&x);
secp256k1_fe_sqr(&s, &x);
@@ -746,6 +808,7 @@ void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
void run_sqrt(void) {
secp256k1_fe_t ns, x, s, t;
+ int i;
/* Check sqrt(0) is 0 */
secp256k1_fe_set_int(&x, 0);
@@ -753,7 +816,7 @@ void run_sqrt(void) {
test_sqrt(&s, &x);
/* Check sqrt of small squares (and their negatives) */
- for (int i=1; i<=100; i++) {
+ for (i = 1; i <= 100; i++) {
secp256k1_fe_set_int(&x, i);
secp256k1_fe_sqr(&s, &x);
test_sqrt(&s, &x);
@@ -762,9 +825,10 @@ void run_sqrt(void) {
}
/* Consistency checks for large random values */
- for (int i=0; i<10; i++) {
+ for (i = 0; i < 10; i++) {
+ int j;
random_fe_non_square(&ns);
- for (int j=0; j<count; j++) {
+ for (j = 0; j < count; j++) {
random_fe(&x);
secp256k1_fe_sqr(&s, &x);
test_sqrt(&s, &x);
@@ -787,13 +851,13 @@ void ge_equals_ge(const secp256k1_ge_t *a, const secp256k1_ge_t *b) {
}
void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) {
+ secp256k1_fe_t z2s;
+ secp256k1_fe_t u1, u2, s1, s2;
CHECK(a->infinity == b->infinity);
if (a->infinity)
return;
/* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
- secp256k1_fe_t z2s;
secp256k1_fe_sqr(&z2s, &b->z);
- secp256k1_fe_t u1, u2, s1, s2;
secp256k1_fe_mul(&u1, &a->x, &z2s);
u2 = b->x; secp256k1_fe_normalize_weak(&u2);
secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
@@ -803,6 +867,7 @@ void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) {
}
void test_ge(void) {
+ int i, i1;
int runs = 4;
/* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4).
* The second in each pair of identical points uses a random Z coordinate in the Jacobian form.
@@ -814,7 +879,8 @@ void test_ge(void) {
secp256k1_gej_set_infinity(&gej[0]);
secp256k1_ge_clear(&ge[0]);
secp256k1_ge_set_gej_var(&ge[0], &gej[0]);
- for (int i = 0; i < runs; i++) {
+ for (i = 0; i < runs; i++) {
+ int j;
secp256k1_ge_t g;
random_group_element_test(&g);
ge[1 + 4 * i] = g;
@@ -825,7 +891,7 @@ void test_ge(void) {
random_group_element_jacobian_test(&gej[2 + 4 * i], &ge[2 + 4 * i]);
secp256k1_gej_set_ge(&gej[3 + 4 * i], &ge[3 + 4 * i]);
random_group_element_jacobian_test(&gej[4 + 4 * i], &ge[4 + 4 * i]);
- for (int j = 0; j < 4; j++) {
+ for (j = 0; j < 4; j++) {
random_field_element_magnitude(&ge[1 + j + 4 * i].x);
random_field_element_magnitude(&ge[1 + j + 4 * i].y);
random_field_element_magnitude(&gej[1 + j + 4 * i].x);
@@ -834,8 +900,9 @@ void test_ge(void) {
}
}
- for (int i1 = 0; i1 < 1 + 4 * runs; i1++) {
- for (int i2 = 0; i2 < 1 + 4 * runs; i2++) {
+ for (i1 = 0; i1 < 1 + 4 * runs; i1++) {
+ int i2;
+ for (i2 = 0; i2 < 1 + 4 * runs; i2++) {
/* Compute reference result using gej + gej (var). */
secp256k1_gej_t refj, resj;
secp256k1_ge_t ref;
@@ -883,11 +950,12 @@ void test_ge(void) {
/* Test adding all points together in random order equals infinity. */
{
+ secp256k1_gej_t sum = SECP256K1_GEJ_CONST_INFINITY;
secp256k1_gej_t *gej_shuffled = malloc((4 * runs + 1) * sizeof(secp256k1_gej_t));
- for (int i = 0; i < 4 * runs + 1; i++) {
+ for (i = 0; i < 4 * runs + 1; i++) {
gej_shuffled[i] = gej[i];
}
- for (int i = 0; i < 4 * runs + 1; i++) {
+ for (i = 0; i < 4 * runs + 1; i++) {
int swap = i + secp256k1_rand32() % (4 * runs + 1 - i);
if (swap != i) {
secp256k1_gej_t t = gej_shuffled[i];
@@ -895,9 +963,7 @@ void test_ge(void) {
gej_shuffled[swap] = t;
}
}
- secp256k1_gej_t sum;
- secp256k1_gej_set_infinity(&sum);
- for (int i = 0; i < 4 * runs + 1; i++) {
+ for (i = 0; i < 4 * runs + 1; i++) {
secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i]);
}
CHECK(secp256k1_gej_is_infinity(&sum));
@@ -908,7 +974,7 @@ void test_ge(void) {
{
secp256k1_ge_t *ge_set_all = malloc((4 * runs + 1) * sizeof(secp256k1_ge_t));
secp256k1_ge_set_all_gej_var(4 * runs + 1, ge_set_all, gej);
- for (int i = 0; i < 4 * runs + 1; i++) {
+ for (i = 0; i < 4 * runs + 1; i++) {
ge_equals_gej(&ge_set_all[i], &gej[i]);
}
free(ge_set_all);
@@ -919,7 +985,8 @@ void test_ge(void) {
}
void run_ge(void) {
- for (int i = 0; i < count * 32; i++) {
+ int i;
+ for (i = 0; i < count * 32; i++) {
test_ge();
}
}
@@ -928,41 +995,35 @@ void run_ge(void) {
void run_ecmult_chain(void) {
/* random starting point A (on the curve) */
- secp256k1_fe_t ax; VERIFY_CHECK(secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64));
- secp256k1_fe_t ay; VERIFY_CHECK(secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64));
- secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay);
+ secp256k1_gej_t a = SECP256K1_GEJ_CONST(
+ 0x8b30bbe9, 0xae2a9906, 0x96b22f67, 0x0709dff3,
+ 0x727fd8bc, 0x04d3362c, 0x6c7bf458, 0xe2846004,
+ 0xa357ae91, 0x5c4a6528, 0x1309edf2, 0x0504740f,
+ 0x0eb33439, 0x90216b4f, 0x81063cb6, 0x5f2f7e0f
+ );
/* two random initial factors xn and gn */
- static const unsigned char xni[32] = {
- 0x84, 0xcc, 0x54, 0x52, 0xf7, 0xfd, 0xe1, 0xed,
- 0xb4, 0xd3, 0x8a, 0x8c, 0xe9, 0xb1, 0xb8, 0x4c,
- 0xce, 0xf3, 0x1f, 0x14, 0x6e, 0x56, 0x9b, 0xe9,
- 0x70, 0x5d, 0x35, 0x7a, 0x42, 0x98, 0x54, 0x07
- };
- secp256k1_scalar_t xn;
- secp256k1_scalar_set_b32(&xn, xni, NULL);
- static const unsigned char gni[32] = {
- 0xa1, 0xe5, 0x8d, 0x22, 0x55, 0x3d, 0xcd, 0x42,
- 0xb2, 0x39, 0x80, 0x62, 0x5d, 0x4c, 0x57, 0xa9,
- 0x6e, 0x93, 0x23, 0xd4, 0x2b, 0x31, 0x52, 0xe5,
- 0xca, 0x2c, 0x39, 0x90, 0xed, 0xc7, 0xc9, 0xde
- };
- secp256k1_scalar_t gn;
- secp256k1_scalar_set_b32(&gn, gni, NULL);
+ secp256k1_scalar_t xn = SECP256K1_SCALAR_CONST(
+ 0x84cc5452, 0xf7fde1ed, 0xb4d38a8c, 0xe9b1b84c,
+ 0xcef31f14, 0x6e569be9, 0x705d357a, 0x42985407
+ );
+ secp256k1_scalar_t gn = SECP256K1_SCALAR_CONST(
+ 0xa1e58d22, 0x553dcd42, 0xb2398062, 0x5d4c57a9,
+ 0x6e9323d4, 0x2b3152e5, 0xca2c3990, 0xedc7c9de
+ );
/* two small multipliers to be applied to xn and gn in every iteration: */
- static const unsigned char xfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x13,0x37};
- secp256k1_scalar_t xf;
- secp256k1_scalar_set_b32(&xf, xfi, NULL);
- static const unsigned char gfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x71,0x13};
- secp256k1_scalar_t gf;
- secp256k1_scalar_set_b32(&gf, gfi, NULL);
+ static const secp256k1_scalar_t xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337);
+ static const secp256k1_scalar_t gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113);
/* accumulators with the resulting coefficients to A and G */
- secp256k1_scalar_t ae;
- secp256k1_scalar_set_int(&ae, 1);
- secp256k1_scalar_t ge;
- secp256k1_scalar_set_int(&ge, 0);
- /* the point being computed */
+ secp256k1_scalar_t ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_scalar_t ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ /* actual points */
secp256k1_gej_t x = a;
- for (int i=0; i<200*count; i++) {
+ secp256k1_gej_t x2;
+ int i;
+
+ /* the point being computed */
+ x = a;
+ for (i = 0; i < 200*count; i++) {
/* in each iteration, compute X = xn*X + gn*G; */
secp256k1_ecmult(&x, &x, &xn, &gn);
/* also compute ae and ge: the actual accumulated factors for A and G */
@@ -976,78 +1037,84 @@ void run_ecmult_chain(void) {
/* verify */
if (i == 19999) {
- char res[132]; int resl = 132;
- secp256k1_gej_get_hex(res, &resl, &x);
- CHECK(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0);
+ /* expected result after 19999 iterations */
+ secp256k1_gej_t rp = SECP256K1_GEJ_CONST(
+ 0xD6E96687, 0xF9B10D09, 0x2A6F3543, 0x9D86CEBE,
+ 0xA4535D0D, 0x409F5358, 0x6440BD74, 0xB933E830,
+ 0xB95CBCA2, 0xC77DA786, 0x539BE8FD, 0x53354D2D,
+ 0x3B4F566A, 0xE6580454, 0x07ED6015, 0xEE1B2A88
+ );
+
+ secp256k1_gej_neg(&rp, &rp);
+ secp256k1_gej_add_var(&rp, &rp, &x);
+ CHECK(secp256k1_gej_is_infinity(&rp));
}
}
/* redo the computation, but directly with the resulting ae and ge coefficients: */
- secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge);
- char res[132]; int resl = 132;
- char res2[132]; int resl2 = 132;
- secp256k1_gej_get_hex(res, &resl, &x);
- secp256k1_gej_get_hex(res2, &resl2, &x2);
- CHECK(strcmp(res, res2) == 0);
- CHECK(strlen(res) == 131);
+ secp256k1_ecmult(&x2, &a, &ae, &ge);
+ secp256k1_gej_neg(&x2, &x2);
+ secp256k1_gej_add_var(&x2, &x2, &x);
+ CHECK(secp256k1_gej_is_infinity(&x2));
}
void test_point_times_order(const secp256k1_gej_t *point) {
- unsigned char pub[65];
/* X * (point + G) + (order-X) * (pointer + G) = 0 */
secp256k1_scalar_t x;
- random_scalar_order_test(&x);
secp256k1_scalar_t nx;
- secp256k1_scalar_negate(&nx, &x);
secp256k1_gej_t res1, res2;
+ secp256k1_ge_t res3;
+ unsigned char pub[65];
+ int psize = 65;
+ random_scalar_order_test(&x);
+ secp256k1_scalar_negate(&nx, &x);
secp256k1_ecmult(&res1, point, &x, &x); /* calc res1 = x * point + x * G; */
secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */
secp256k1_gej_add_var(&res1, &res1, &res2);
CHECK(secp256k1_gej_is_infinity(&res1));
CHECK(secp256k1_gej_is_valid_var(&res1) == 0);
- secp256k1_ge_t res3;
secp256k1_ge_set_gej(&res3, &res1);
CHECK(secp256k1_ge_is_infinity(&res3));
CHECK(secp256k1_ge_is_valid_var(&res3) == 0);
- int psize = 65;
CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0);
psize = 65;
CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0);
}
void run_point_times_order(void) {
- secp256k1_fe_t x; VERIFY_CHECK(secp256k1_fe_set_hex(&x, "02", 2));
- for (int i=0; i<500; i++) {
+ int i;
+ secp256k1_fe_t x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2);
+ static const secp256k1_fe_t xr = SECP256K1_FE_CONST(
+ 0x7603CB59, 0xB0EF6C63, 0xFE608479, 0x2A0C378C,
+ 0xDB3233A8, 0x0F8A9A09, 0xA877DEAD, 0x31B38C45
+ );
+ for (i = 0; i < 500; i++) {
secp256k1_ge_t p;
if (secp256k1_ge_set_xo_var(&p, &x, 1)) {
- CHECK(secp256k1_ge_is_valid_var(&p));
secp256k1_gej_t j;
+ CHECK(secp256k1_ge_is_valid_var(&p));
secp256k1_gej_set_ge(&j, &p);
CHECK(secp256k1_gej_is_valid_var(&j));
test_point_times_order(&j);
}
secp256k1_fe_sqr(&x, &x);
}
- char c[65];
- int cl = 1;
- c[1] = 123;
- secp256k1_fe_get_hex(c, &cl, &x); /* Check that fe_get_hex handles a too short input. */
- CHECK(c[1] == 123);
- cl = 65;
- secp256k1_fe_get_hex(c, &cl, &x);
- CHECK(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0);
+ secp256k1_fe_normalize_var(&x);
+ CHECK(secp256k1_fe_equal_var(&x, &xr));
}
void test_wnaf(const secp256k1_scalar_t *number, int w) {
secp256k1_scalar_t x, two, t;
+ int wnaf[256];
+ int zeroes = -1;
+ int i;
+ int bits;
secp256k1_scalar_set_int(&x, 0);
secp256k1_scalar_set_int(&two, 2);
- int wnaf[256];
- int bits = secp256k1_ecmult_wnaf(wnaf, number, w);
+ bits = secp256k1_ecmult_wnaf(wnaf, number, w);
CHECK(bits <= 256);
- int zeroes = -1;
- for (int i=bits-1; i>=0; i--) {
- secp256k1_scalar_mul(&x, &x, &two);
+ for (i = bits-1; i >= 0; i--) {
int v = wnaf[i];
+ secp256k1_scalar_mul(&x, &x, &two);
if (v) {
CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */
zeroes=0;
@@ -1070,8 +1137,9 @@ void test_wnaf(const secp256k1_scalar_t *number, int w) {
}
void run_wnaf(void) {
+ int i;
secp256k1_scalar_t n;
- for (int i=0; i<count; i++) {
+ for (i = 0; i < count; i++) {
random_scalar_order(&n);
if (i % 1)
secp256k1_scalar_negate(&n, &n);
@@ -1087,26 +1155,29 @@ void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *key, cons
}
void test_ecdsa_sign_verify(void) {
+ secp256k1_gej_t pubj;
+ secp256k1_ge_t pub;
+ secp256k1_scalar_t one;
+ secp256k1_scalar_t msg, key;
+ secp256k1_ecdsa_sig_t sig;
int recid;
int getrec;
- secp256k1_scalar_t msg, key;
random_scalar_order_test(&msg);
random_scalar_order_test(&key);
- secp256k1_gej_t pubj; secp256k1_ecmult_gen(&pubj, &key);
- secp256k1_ge_t pub; secp256k1_ge_set_gej(&pub, &pubj);
- secp256k1_ecdsa_sig_t sig;
+ secp256k1_ecmult_gen(&pubj, &key);
+ secp256k1_ge_set_gej(&pub, &pubj);
getrec = secp256k1_rand32()&1;
random_sign(&sig, &key, &msg, getrec?&recid:NULL);
if (getrec) CHECK(recid >= 0 && recid < 4);
CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
- secp256k1_scalar_t one;
secp256k1_scalar_set_int(&one, 1);
secp256k1_scalar_add(&msg, &msg, &one);
CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
}
void run_ecdsa_sign_verify(void) {
- for (int i=0; i<10*count; i++) {
+ int i;
+ for (i = 0; i < 10*count; i++) {
test_ecdsa_sign_verify();
}
}
@@ -1149,9 +1220,32 @@ static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char
return nonce_function_rfc6979(nonce32, msg32, key32, counter - 5, data);
}
+int is_empty_compact_signature(const unsigned char *sig64) {
+ static const unsigned char res[64] = {0};
+ return memcmp(sig64, res, 64) == 0;
+}
+
void test_ecdsa_end_to_end(void) {
+ unsigned char extra[32] = {0x00};
unsigned char privkey[32];
unsigned char message[32];
+ unsigned char privkey2[32];
+ unsigned char csignature[64];
+ unsigned char signature[72];
+ unsigned char signature2[72];
+ unsigned char signature3[72];
+ unsigned char signature4[72];
+ unsigned char pubkey[65];
+ unsigned char recpubkey[65];
+ unsigned char seckey[300];
+ int signaturelen = 72;
+ int signaturelen2 = 72;
+ int signaturelen3 = 72;
+ int signaturelen4 = 72;
+ int recid = 0;
+ int recpubkeylen = 0;
+ int pubkeylen = 65;
+ int seckeylen = 300;
/* Generate a random key and message. */
{
@@ -1164,7 +1258,6 @@ void test_ecdsa_end_to_end(void) {
/* Construct and verify corresponding public key. */
CHECK(secp256k1_ec_seckey_verify(privkey) == 1);
- unsigned char pubkey[65]; int pubkeylen = 65;
CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, (secp256k1_rand32() & 3) != 0) == 1);
if (secp256k1_rand32() & 1) {
CHECK(secp256k1_ec_pubkey_decompress(pubkey, &pubkeylen));
@@ -1172,52 +1265,73 @@ void test_ecdsa_end_to_end(void) {
CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen));
/* Verify private key import and export. */
- unsigned char seckey[300]; int seckeylen = 300;
CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1);
- unsigned char privkey2[32];
CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1);
CHECK(memcmp(privkey, privkey2, 32) == 0);
/* Optionally tweak the keys using addition. */
if (secp256k1_rand32() % 3 == 0) {
+ int ret1;
+ int ret2;
unsigned char rnd[32];
+ unsigned char pubkey2[65];
+ int pubkeylen2 = 65;
secp256k1_rand256_test(rnd);
- int ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd);
- int ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd);
+ ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd);
+ ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd);
CHECK(ret1 == ret2);
if (ret1 == 0) return;
- unsigned char pubkey2[65]; int pubkeylen2 = 65;
CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
}
/* Optionally tweak the keys using multiplication. */
if (secp256k1_rand32() % 3 == 0) {
+ int ret1;
+ int ret2;
unsigned char rnd[32];
+ unsigned char pubkey2[65];
+ int pubkeylen2 = 65;
secp256k1_rand256_test(rnd);
- int ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd);
- int ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd);
+ ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd);
+ ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd);
CHECK(ret1 == ret2);
if (ret1 == 0) return;
- unsigned char pubkey2[65]; int pubkeylen2 = 65;
CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
}
/* Sign. */
- unsigned char signature[72]; int signaturelen = 72;
CHECK(secp256k1_ecdsa_sign(message, signature, &signaturelen, privkey, NULL, NULL) == 1);
+ CHECK(signaturelen > 0);
+ CHECK(secp256k1_ecdsa_sign(message, signature2, &signaturelen2, privkey, NULL, extra) == 1);
+ CHECK(signaturelen2 > 0);
+ extra[31] = 1;
+ CHECK(secp256k1_ecdsa_sign(message, signature3, &signaturelen3, privkey, NULL, extra) == 1);
+ CHECK(signaturelen3 > 0);
+ extra[31] = 0;
+ extra[0] = 1;
+ CHECK(secp256k1_ecdsa_sign(message, signature4, &signaturelen4, privkey, NULL, extra) == 1);
+ CHECK(signaturelen3 > 0);
+ CHECK((signaturelen != signaturelen2) || (memcmp(signature, signature2, signaturelen) != 0));
+ CHECK((signaturelen != signaturelen3) || (memcmp(signature, signature3, signaturelen) != 0));
+ CHECK((signaturelen3 != signaturelen2) || (memcmp(signature3, signature2, signaturelen3) != 0));
+ CHECK((signaturelen4 != signaturelen3) || (memcmp(signature4, signature3, signaturelen4) != 0));
+ CHECK((signaturelen4 != signaturelen2) || (memcmp(signature4, signature2, signaturelen4) != 0));
+ CHECK((signaturelen4 != signaturelen) || (memcmp(signature4, signature, signaturelen4) != 0));
/* Verify. */
CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) == 1);
+ CHECK(secp256k1_ecdsa_verify(message, signature2, signaturelen2, pubkey, pubkeylen) == 1);
+ CHECK(secp256k1_ecdsa_verify(message, signature3, signaturelen3, pubkey, pubkeylen) == 1);
+ CHECK(secp256k1_ecdsa_verify(message, signature4, signaturelen4, pubkey, pubkeylen) == 1);
/* Destroy signature and verify again. */
signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255);
CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) != 1);
/* Compact sign. */
- unsigned char csignature[64]; int recid = 0;
CHECK(secp256k1_ecdsa_sign_compact(message, csignature, privkey, NULL, NULL, &recid) == 1);
+ CHECK(!is_empty_compact_signature(csignature));
/* Recover. */
- unsigned char recpubkey[65]; int recpubkeylen = 0;
CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1);
CHECK(recpubkeylen == pubkeylen);
CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0);
@@ -1230,6 +1344,8 @@ void test_ecdsa_end_to_end(void) {
}
void test_random_pubkeys(void) {
+ secp256k1_ge_t elem;
+ secp256k1_ge_t elem2;
unsigned char in[65];
/* Generate some randomly sized pubkeys. */
uint32_t r = secp256k1_rand32();
@@ -1247,8 +1363,6 @@ void test_random_pubkeys(void) {
r>>=11;
if (len > 1) secp256k1_rand256(&in[1]);
if (len > 33) secp256k1_rand256(&in[33]);
- secp256k1_ge_t elem;
- secp256k1_ge_t elem2;
if (secp256k1_eckey_pubkey_parse(&elem, in, len)) {
unsigned char out[65];
unsigned char firstb;
@@ -1282,13 +1396,15 @@ void test_random_pubkeys(void) {
}
void run_random_pubkeys(void) {
- for (int i=0; i<10*count; i++) {
+ int i;
+ for (i = 0; i < 10*count; i++) {
test_random_pubkeys();
}
}
void run_ecdsa_end_to_end(void) {
- for (int i=0; i<64*count; i++) {
+ int i;
+ for (i = 0; i < 64*count; i++) {
test_ecdsa_end_to_end();
}
}
@@ -1314,12 +1430,8 @@ void test_ecdsa_edge_cases(void) {
0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
};
unsigned char pubkey[65];
+ int t;
int pubkeylen = 65;
- CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 0));
- CHECK(secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 1));
- CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 2));
- CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 3));
-
/* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
const unsigned char sigb64[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
@@ -1333,7 +1445,16 @@ void test_ecdsa_edge_cases(void) {
};
unsigned char pubkeyb[33];
int pubkeyblen = 33;
- for (int recid = 0; recid < 4; recid++) {
+ int recid;
+
+ CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 0));
+ CHECK(secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 1));
+ CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 2));
+ CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 3));
+
+ for (recid = 0; recid < 4; recid++) {
+ int i;
+ int recid2;
/* (4,4) encoded in DER. */
unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04};
unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01};
@@ -1376,7 +1497,7 @@ void test_ecdsa_edge_cases(void) {
};
CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkeyb, &pubkeyblen, 1, recid));
CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1);
- for (int recid2 = 0; recid2 < 4; recid2++) {
+ for (recid2 = 0; recid2 < 4; recid2++) {
unsigned char pubkey2b[33];
int pubkey2blen = 33;
CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkey2b, &pubkey2blen, 1, recid2));
@@ -1402,10 +1523,11 @@ void test_ecdsa_edge_cases(void) {
sigbder[7]--;
CHECK(secp256k1_ecdsa_verify(msg32, sigbder, 6, pubkeyb, pubkeyblen) == -2);
CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder)-1, pubkeyb, pubkeyblen) == -2);
- for(int i = 0; i<8; i++) {
+ for(i = 0; i < 8; i++) {
+ int c;
unsigned char orig = sigbder[i];
/*Try every single-byte change.*/
- for (int c=0; c<256; c++) {
+ for (c = 0; c < 256; c++) {
if (c == orig ) continue;
sigbder[i] = c;
CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) ==
@@ -1417,16 +1539,17 @@ void test_ecdsa_edge_cases(void) {
/* Test the case where ECDSA recomputes a point that is infinity. */
{
+ secp256k1_gej_t keyj;
+ secp256k1_ge_t key;
+ secp256k1_scalar_t msg;
secp256k1_ecdsa_sig_t sig;
secp256k1_scalar_set_int(&sig.s, 1);
secp256k1_scalar_negate(&sig.s, &sig.s);
secp256k1_scalar_inverse(&sig.s, &sig.s);
secp256k1_scalar_set_int(&sig.r, 1);
- secp256k1_gej_t keyj;
secp256k1_ecmult_gen(&keyj, &sig.r);
- secp256k1_ge_t key;
secp256k1_ge_set_gej(&key, &keyj);
- secp256k1_scalar_t msg = sig.s;
+ msg = sig.s;
CHECK(secp256k1_ecdsa_sig_verify(&sig, &key, &msg) == 0);
}
@@ -1489,69 +1612,97 @@ void test_ecdsa_edge_cases(void) {
unsigned char sig[72];
int siglen = 72;
CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 0);
+ CHECK(siglen == 0);
CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 0);
+ CHECK(siglen == 0);
msg[31] = 0xaa;
siglen = 72;
CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 1);
+ CHECK(siglen > 0);
CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 1);
+ CHECK(siglen > 0);
siglen = 10;
CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) != 1);
+ CHECK(siglen == 0);
}
/* Nonce function corner cases. */
- {
+ for (t = 0; t < 2; t++) {
+ static const unsigned char zero[32] = {0x00};
+ int i;
unsigned char key[32];
unsigned char msg[32];
unsigned char sig[72];
- memset(key, 0, 32);
+ unsigned char sig2[72];
+ secp256k1_ecdsa_sig_t s[512];
+ int siglen = 72;
+ int siglen2 = 72;
+ int recid2;
+ const unsigned char *extra;
+ extra = t == 0 ? NULL : zero;
memset(msg, 0, 32);
- key[31] = 1;
msg[31] = 1;
- int siglen = 72;
- int recid;
+ /* High key results in signature failure. */
+ memset(key, 0xFF, 32);
+ CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 0);
+ CHECK(siglen == 0);
+ /* Zero key results in signature failure. */
+ memset(key, 0, 32);
+ CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 0);
+ CHECK(siglen == 0);
/* Nonce function failure results in signature failure. */
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_fail, NULL) == 0);
- CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_fail, NULL, &recid) == 0);
+ key[31] = 1;
+ CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_fail, extra) == 0);
+ CHECK(siglen == 0);
+ CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_fail, extra, &recid) == 0);
+ CHECK(is_empty_compact_signature(sig));
/* The retry loop successfully makes its way to the first good value. */
- unsigned char sig2[72];
- int siglen2 = 72;
siglen = 72;
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_retry, NULL) == 1);
- CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, nonce_function_rfc6979, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_retry, extra) == 1);
+ CHECK(siglen > 0);
+ CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, nonce_function_rfc6979, extra) == 1);
+ CHECK(siglen > 0);
CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0));
- int recid2;
- CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_retry, NULL, &recid) == 1);
- CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, nonce_function_rfc6979, NULL, &recid2) == 1);
+ CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_retry, extra, &recid) == 1);
+ CHECK(!is_empty_compact_signature(sig));
+ CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, nonce_function_rfc6979, extra, &recid2) == 1);
+ CHECK(!is_empty_compact_signature(sig2));
CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0));
/* The default nonce function is determinstic. */
siglen = 72;
siglen2 = 72;
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, NULL) == 1);
- CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 1);
+ CHECK(siglen > 0);
+ CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1);
+ CHECK(siglen2 > 0);
CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0));
- CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, NULL, NULL, &recid) == 1);
- CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, NULL, NULL, &recid2) == 1);
+ CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, NULL, extra, &recid) == 1);
+ CHECK(!is_empty_compact_signature(sig));
+ CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, NULL, extra, &recid2) == 1);
+ CHECK(!is_empty_compact_signature(sig));
CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0));
/* The default nonce function changes output with different messages. */
- secp256k1_ecdsa_sig_t s[512];
- for(int i=0; i<256; i++) {
+ for(i = 0; i < 256; i++) {
+ int j;
siglen2 = 72;
msg[0] = i;
- CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1);
+ CHECK(!is_empty_compact_signature(sig));
CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2));
- for (int j=0; j<i; j++) {
+ for (j = 0; j < i; j++) {
CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r));
}
}
msg[0] = 0;
msg[31] = 2;
/* The default nonce function changes output with different keys. */
- for(int i=256; i<512; i++) {
+ for(i = 256; i < 512; i++) {
+ int j;
siglen2 = 72;
key[0] = i - 256;
- CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1);
CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2));
- for (int j=0; j<i; j++) {
+ for (j = 0; j < i; j++) {
CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r));
}
}
@@ -1581,8 +1732,8 @@ void run_ecdsa_edge_cases(void) {
EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) {
unsigned char privkey[300];
int privkeylen;
- int compr = secp256k1_rand32() & 1;
const unsigned char* pbegin = privkey;
+ int compr = secp256k1_rand32() & 1;
EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
CHECK(secp256k1_eckey_privkey_serialize(privkey, &privkeylen, key, compr));
CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
@@ -1591,31 +1742,32 @@ EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) {
}
void test_ecdsa_openssl(void) {
+ secp256k1_gej_t qj;
+ secp256k1_ge_t q;
+ secp256k1_ecdsa_sig_t sig;
+ secp256k1_scalar_t one;
+ secp256k1_scalar_t msg2;
secp256k1_scalar_t key, msg;
+ EC_KEY *ec_key;
+ unsigned int sigsize = 80;
+ int secp_sigsize = 80;
unsigned char message[32];
+ unsigned char signature[80];
secp256k1_rand256_test(message);
secp256k1_scalar_set_b32(&msg, message, NULL);
random_scalar_order_test(&key);
- secp256k1_gej_t qj;
secp256k1_ecmult_gen(&qj, &key);
- secp256k1_ge_t q;
secp256k1_ge_set_gej(&q, &qj);
- EC_KEY *ec_key = get_openssl_key(&key);
+ ec_key = get_openssl_key(&key);
CHECK(ec_key);
- unsigned char signature[80];
- unsigned int sigsize = 80;
CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key));
- secp256k1_ecdsa_sig_t sig;
CHECK(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize));
CHECK(secp256k1_ecdsa_sig_verify(&sig, &q, &msg));
- secp256k1_scalar_t one;
secp256k1_scalar_set_int(&one, 1);
- secp256k1_scalar_t msg2;
secp256k1_scalar_add(&msg2, &msg, &one);
CHECK(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg2));
random_sign(&sig, &key, &msg, NULL);
- int secp_sigsize = 80;
CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sig));
CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1);
@@ -1623,33 +1775,54 @@ void test_ecdsa_openssl(void) {
}
void run_ecdsa_openssl(void) {
- for (int i=0; i<10*count; i++) {
+ int i;
+ for (i = 0; i < 10*count; i++) {
test_ecdsa_openssl();
}
}
#endif
int main(int argc, char **argv) {
+ unsigned char seed16[16] = {0};
+ unsigned char run32[32] = {0};
/* find iteration count */
if (argc > 1) {
count = strtol(argv[1], NULL, 0);
}
/* find random seed */
- uint64_t seed;
if (argc > 2) {
- seed = strtoull(argv[2], NULL, 0);
+ int pos = 0;
+ const char* ch = argv[2];
+ while (pos < 16 && ch[0] != 0 && ch[1] != 0) {
+ unsigned short sh;
+ if (sscanf(ch, "%2hx", &sh)) {
+ seed16[pos] = sh;
+ } else {
+ break;
+ }
+ ch += 2;
+ pos++;
+ }
} else {
FILE *frand = fopen("/dev/urandom", "r");
- if (!frand || !fread(&seed, sizeof(seed), 1, frand)) {
- seed = time(NULL) * 1337;
+ if (!frand || !fread(&seed16, sizeof(seed16), 1, frand)) {
+ uint64_t t = time(NULL) * (uint64_t)1337;
+ seed16[0] ^= t;
+ seed16[1] ^= t >> 8;
+ seed16[2] ^= t >> 16;
+ seed16[3] ^= t >> 24;
+ seed16[4] ^= t >> 32;
+ seed16[5] ^= t >> 40;
+ seed16[6] ^= t >> 48;
+ seed16[7] ^= t >> 56;
}
fclose(frand);
}
- secp256k1_rand_seed(seed);
+ secp256k1_rand_seed(seed16);
printf("test count = %i\n", count);
- printf("random seed = %llu\n", (unsigned long long)seed);
+ printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]);
/* initialize */
secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY);
@@ -1657,12 +1830,6 @@ int main(int argc, char **argv) {
/* initializing a second time shouldn't cause any harm or memory leaks. */
secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY);
- /* Likewise, re-running the internal init functions should be harmless. */
- secp256k1_fe_start();
- secp256k1_ge_start();
- secp256k1_scalar_start();
- secp256k1_ecdsa_start();
-
run_sha256_tests();
run_hmac_sha256_tests();
run_rfc6979_hmac_sha256_tests();
@@ -1680,6 +1847,7 @@ int main(int argc, char **argv) {
run_field_inv_var();
run_field_inv_all_var();
run_field_misc();
+ run_field_convert();
run_sqr();
run_sqrt();
@@ -1700,18 +1868,13 @@ int main(int argc, char **argv) {
run_ecdsa_openssl();
#endif
- printf("random run = %llu\n", (unsigned long long)secp256k1_rand32() + ((unsigned long long)secp256k1_rand32() << 32));
+ secp256k1_rand256(run32);
+ printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]);
/* shutdown */
secp256k1_stop();
/* shutting down twice shouldn't cause any double frees. */
secp256k1_stop();
-
- /* Same for the internal shutdown functions. */
- secp256k1_fe_stop();
- secp256k1_ge_stop();
- secp256k1_scalar_stop();
- secp256k1_ecdsa_stop();
return 0;
}