aboutsummaryrefslogtreecommitdiff
path: root/src/tests.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/tests.c')
-rw-r--r--src/tests.c1080
1 files changed, 1080 insertions, 0 deletions
diff --git a/src/tests.c b/src/tests.c
new file mode 100644
index 0000000000..5d9b8344d9
--- /dev/null
+++ b/src/tests.c
@@ -0,0 +1,1080 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#include <stdio.h>
+#include <stdlib.h>
+
+#include "secp256k1.c"
+#include "testrand_impl.h"
+
+#ifdef ENABLE_OPENSSL_TESTS
+#include "openssl/bn.h"
+#include "openssl/ec.h"
+#include "openssl/ecdsa.h"
+#include "openssl/obj_mac.h"
+#endif
+
+static int count = 64;
+
+/***** NUM TESTS *****/
+
+void random_num_negate(secp256k1_num_t *num) {
+ if (secp256k1_rand32() & 1)
+ secp256k1_num_negate(num);
+}
+
+void random_field_element_test(secp256k1_fe_t *fe) {
+ do {
+ unsigned char b32[32];
+ secp256k1_rand256_test(b32);
+ secp256k1_num_t num;
+ secp256k1_num_set_bin(&num, b32, 32);
+ if (secp256k1_num_cmp(&num, &secp256k1_fe_consts->p) >= 0)
+ continue;
+ secp256k1_fe_set_b32(fe, b32);
+ break;
+ } while(1);
+}
+
+void random_field_element_magnitude(secp256k1_fe_t *fe) {
+ secp256k1_fe_normalize(fe);
+ int n = secp256k1_rand32() % 4;
+ for (int i = 0; i < n; i++) {
+ secp256k1_fe_negate(fe, fe, 1 + 2*i);
+ secp256k1_fe_negate(fe, fe, 2 + 2*i);
+ }
+}
+
+void random_group_element_test(secp256k1_ge_t *ge) {
+ secp256k1_fe_t fe;
+ do {
+ random_field_element_test(&fe);
+ if (secp256k1_ge_set_xo(ge, &fe, secp256k1_rand32() & 1))
+ break;
+ } while(1);
+}
+
+void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge_t *ge) {
+ do {
+ random_field_element_test(&gej->z);
+ if (!secp256k1_fe_is_zero(&gej->z)) {
+ break;
+ }
+ } while(1);
+ secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &gej->z);
+ secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &z2, &gej->z);
+ secp256k1_fe_mul(&gej->x, &ge->x, &z2);
+ secp256k1_fe_mul(&gej->y, &ge->y, &z3);
+ gej->infinity = ge->infinity;
+}
+
+void random_num_order_test(secp256k1_num_t *num) {
+ do {
+ unsigned char b32[32];
+ secp256k1_rand256_test(b32);
+ secp256k1_num_set_bin(num, b32, 32);
+ if (secp256k1_num_is_zero(num))
+ continue;
+ if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0)
+ continue;
+ break;
+ } while(1);
+}
+
+void random_scalar_order_test(secp256k1_scalar_t *num) {
+ do {
+ unsigned char b32[32];
+ secp256k1_rand256_test(b32);
+ int overflow = 0;
+ secp256k1_scalar_set_b32(num, b32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(num))
+ continue;
+ break;
+ } while(1);
+}
+
+void random_num_order(secp256k1_num_t *num) {
+ do {
+ unsigned char b32[32];
+ secp256k1_rand256(b32);
+ secp256k1_num_set_bin(num, b32, 32);
+ if (secp256k1_num_is_zero(num))
+ continue;
+ if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0)
+ continue;
+ break;
+ } while(1);
+}
+
+void test_num_copy_inc_cmp(void) {
+ secp256k1_num_t n1,n2;
+ random_num_order(&n1);
+ secp256k1_num_copy(&n2, &n1);
+ CHECK(secp256k1_num_eq(&n1, &n2));
+ CHECK(secp256k1_num_eq(&n2, &n1));
+ secp256k1_num_inc(&n2);
+ CHECK(!secp256k1_num_eq(&n1, &n2));
+ CHECK(!secp256k1_num_eq(&n2, &n1));
+}
+
+
+void test_num_get_set_hex(void) {
+ secp256k1_num_t n1,n2;
+ random_num_order_test(&n1);
+ char c[64];
+ secp256k1_num_get_hex(c, 64, &n1);
+ secp256k1_num_set_hex(&n2, c, 64);
+ CHECK(secp256k1_num_eq(&n1, &n2));
+ for (int i=0; i<64; i++) {
+ /* check whether the lower 4 bits correspond to the last hex character */
+ int low1 = secp256k1_num_shift(&n1, 4);
+ int lowh = c[63];
+ int low2 = ((lowh>>6)*9+(lowh-'0'))&15;
+ CHECK(low1 == low2);
+ /* shift bits off the hex representation, and compare */
+ memmove(c+1, c, 63);
+ c[0] = '0';
+ secp256k1_num_set_hex(&n2, c, 64);
+ CHECK(secp256k1_num_eq(&n1, &n2));
+ }
+}
+
+void test_num_get_set_bin(void) {
+ secp256k1_num_t n1,n2;
+ random_num_order_test(&n1);
+ unsigned char c[32];
+ secp256k1_num_get_bin(c, 32, &n1);
+ secp256k1_num_set_bin(&n2, c, 32);
+ CHECK(secp256k1_num_eq(&n1, &n2));
+ for (int i=0; i<32; i++) {
+ /* check whether the lower 8 bits correspond to the last byte */
+ int low1 = secp256k1_num_shift(&n1, 8);
+ int low2 = c[31];
+ CHECK(low1 == low2);
+ /* shift bits off the byte representation, and compare */
+ memmove(c+1, c, 31);
+ c[0] = 0;
+ secp256k1_num_set_bin(&n2, c, 32);
+ CHECK(secp256k1_num_eq(&n1, &n2));
+ }
+}
+
+void run_num_int(void) {
+ secp256k1_num_t n1;
+ for (int i=-255; i<256; i++) {
+ unsigned char c1[3] = {};
+ c1[2] = abs(i);
+ unsigned char c2[3] = {0x11,0x22,0x33};
+ secp256k1_num_set_int(&n1, i);
+ secp256k1_num_get_bin(c2, 3, &n1);
+ CHECK(memcmp(c1, c2, 3) == 0);
+ }
+}
+
+void test_num_negate(void) {
+ secp256k1_num_t n1;
+ secp256k1_num_t n2;
+ random_num_order_test(&n1); /* n1 = R */
+ random_num_negate(&n1);
+ secp256k1_num_copy(&n2, &n1); /* n2 = R */
+ secp256k1_num_sub(&n1, &n2, &n1); /* n1 = n2-n1 = 0 */
+ CHECK(secp256k1_num_is_zero(&n1));
+ secp256k1_num_copy(&n1, &n2); /* n1 = R */
+ secp256k1_num_negate(&n1); /* n1 = -R */
+ CHECK(!secp256k1_num_is_zero(&n1));
+ secp256k1_num_add(&n1, &n2, &n1); /* n1 = n2+n1 = 0 */
+ CHECK(secp256k1_num_is_zero(&n1));
+ secp256k1_num_copy(&n1, &n2); /* n1 = R */
+ secp256k1_num_negate(&n1); /* n1 = -R */
+ CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2));
+ secp256k1_num_negate(&n1); /* n1 = R */
+ CHECK(secp256k1_num_eq(&n1, &n2));
+}
+
+void test_num_add_sub(void) {
+ int r = secp256k1_rand32();
+ secp256k1_num_t n1;
+ secp256k1_num_t n2;
+ random_num_order_test(&n1); /* n1 = R1 */
+ if (r & 1) {
+ random_num_negate(&n1);
+ }
+ random_num_order_test(&n2); /* n2 = R2 */
+ if (r & 2) {
+ random_num_negate(&n2);
+ }
+ secp256k1_num_t n1p2, n2p1, n1m2, n2m1;
+ secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */
+ secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */
+ secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */
+ secp256k1_num_sub(&n2m1, &n2, &n1); /* n2m1 = R2 - R1 */
+ CHECK(secp256k1_num_eq(&n1p2, &n2p1));
+ CHECK(!secp256k1_num_eq(&n1p2, &n1m2));
+ secp256k1_num_negate(&n2m1); /* n2m1 = -R2 + R1 */
+ CHECK(secp256k1_num_eq(&n2m1, &n1m2));
+ CHECK(!secp256k1_num_eq(&n2m1, &n1));
+ secp256k1_num_add(&n2m1, &n2m1, &n2); /* n2m1 = -R2 + R1 + R2 = R1 */
+ CHECK(secp256k1_num_eq(&n2m1, &n1));
+ CHECK(!secp256k1_num_eq(&n2p1, &n1));
+ secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */
+ CHECK(secp256k1_num_eq(&n2p1, &n1));
+}
+
+void run_num_smalltests(void) {
+ for (int i=0; i<100*count; i++) {
+ test_num_copy_inc_cmp();
+ test_num_get_set_hex();
+ test_num_get_set_bin();
+ test_num_negate();
+ test_num_add_sub();
+ }
+ run_num_int();
+}
+
+/***** SCALAR TESTS *****/
+
+int secp256k1_scalar_eq(const secp256k1_scalar_t *s1, const secp256k1_scalar_t *s2) {
+ secp256k1_scalar_t t;
+ secp256k1_scalar_negate(&t, s2);
+ secp256k1_scalar_add(&t, &t, s1);
+ int ret = secp256k1_scalar_is_zero(&t);
+ return ret;
+}
+
+void scalar_test(void) {
+ unsigned char c[32];
+
+ /* Set 's' to a random scalar, with value 'snum'. */
+ secp256k1_rand256_test(c);
+ secp256k1_scalar_t s;
+ secp256k1_scalar_set_b32(&s, c, NULL);
+ secp256k1_num_t snum;
+ secp256k1_num_set_bin(&snum, c, 32);
+ secp256k1_num_mod(&snum, &secp256k1_ge_consts->order);
+
+ /* Set 's1' to a random scalar, with value 's1num'. */
+ secp256k1_rand256_test(c);
+ secp256k1_scalar_t s1;
+ secp256k1_scalar_set_b32(&s1, c, NULL);
+ secp256k1_num_t s1num;
+ secp256k1_num_set_bin(&s1num, c, 32);
+ secp256k1_num_mod(&s1num, &secp256k1_ge_consts->order);
+
+ /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
+ secp256k1_rand256_test(c);
+ secp256k1_scalar_t s2;
+ int overflow = 0;
+ secp256k1_scalar_set_b32(&s2, c, &overflow);
+ secp256k1_num_t s2num;
+ secp256k1_num_set_bin(&s2num, c, 32);
+ secp256k1_num_mod(&s2num, &secp256k1_ge_consts->order);
+
+ {
+ /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
+ secp256k1_num_t n, t, m;
+ secp256k1_num_set_int(&n, 0);
+ secp256k1_num_set_int(&m, 16);
+ for (int i = 0; i < 256; i += 4) {
+ secp256k1_num_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
+ secp256k1_num_mul(&n, &n, &m);
+ secp256k1_num_add(&n, &n, &t);
+ }
+ CHECK(secp256k1_num_eq(&n, &snum));
+ }
+
+ {
+ /* Test that get_b32 returns the same as get_bin on the number. */
+ unsigned char r1[32];
+ secp256k1_scalar_get_b32(r1, &s2);
+ unsigned char r2[32];
+ secp256k1_num_get_bin(r2, 32, &s2num);
+ CHECK(memcmp(r1, r2, 32) == 0);
+ /* If no overflow occurred when assigning, it should also be equal to the original byte array. */
+ CHECK((memcmp(r1, c, 32) == 0) == (overflow == 0));
+ }
+
+ {
+ /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
+ secp256k1_num_t rnum;
+ secp256k1_num_add(&rnum, &snum, &s2num);
+ secp256k1_num_mod(&rnum, &secp256k1_ge_consts->order);
+ secp256k1_scalar_t r;
+ secp256k1_scalar_add(&r, &s, &s2);
+ secp256k1_num_t r2num;
+ secp256k1_scalar_get_num(&r2num, &r);
+ CHECK(secp256k1_num_eq(&rnum, &r2num));
+ }
+
+ {
+ /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
+ secp256k1_num_t rnum;
+ secp256k1_num_mul(&rnum, &snum, &s2num);
+ secp256k1_num_mod(&rnum, &secp256k1_ge_consts->order);
+ secp256k1_scalar_t r;
+ secp256k1_scalar_mul(&r, &s, &s2);
+ secp256k1_num_t r2num;
+ secp256k1_scalar_get_num(&r2num, &r);
+ CHECK(secp256k1_num_eq(&rnum, &r2num));
+ /* The result can only be zero if at least one of the factors was zero. */
+ CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
+ /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
+ CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
+ CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
+ }
+
+ {
+ /* Check that comparison with zero matches comparison with zero on the number. */
+ CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
+ /* Check that comparison with the half order is equal to testing for high scalar. */
+ CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &secp256k1_ge_consts->half_order) > 0));
+ secp256k1_scalar_t neg;
+ secp256k1_scalar_negate(&neg, &s);
+ secp256k1_num_t negnum;
+ secp256k1_num_sub(&negnum, &secp256k1_ge_consts->order, &snum);
+ secp256k1_num_mod(&negnum, &secp256k1_ge_consts->order);
+ /* Check that comparison with the half order is equal to testing for high scalar after negation. */
+ CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &secp256k1_ge_consts->half_order) > 0));
+ /* Negating should change the high property, unless the value was already zero. */
+ CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
+ secp256k1_num_t negnum2;
+ secp256k1_scalar_get_num(&negnum2, &neg);
+ /* Negating a scalar should be equal to (order - n) mod order on the number. */
+ CHECK(secp256k1_num_eq(&negnum, &negnum2));
+ secp256k1_scalar_add(&neg, &neg, &s);
+ /* Adding a number to its negation should result in zero. */
+ CHECK(secp256k1_scalar_is_zero(&neg));
+ secp256k1_scalar_negate(&neg, &neg);
+ /* Negating zero should still result in zero. */
+ CHECK(secp256k1_scalar_is_zero(&neg));
+ }
+
+ {
+ /* Test that scalar inverses are equal to the inverse of their number modulo the order. */
+ if (!secp256k1_scalar_is_zero(&s)) {
+ secp256k1_scalar_t inv;
+ secp256k1_scalar_inverse(&inv, &s);
+ secp256k1_num_t invnum;
+ secp256k1_num_mod_inverse(&invnum, &snum, &secp256k1_ge_consts->order);
+ secp256k1_num_t invnum2;
+ secp256k1_scalar_get_num(&invnum2, &inv);
+ CHECK(secp256k1_num_eq(&invnum, &invnum2));
+ secp256k1_scalar_mul(&inv, &inv, &s);
+ /* Multiplying a scalar with its inverse must result in one. */
+ CHECK(secp256k1_scalar_is_one(&inv));
+ secp256k1_scalar_inverse(&inv, &inv);
+ /* Inverting one must result in one. */
+ CHECK(secp256k1_scalar_is_one(&inv));
+ }
+ }
+
+ {
+ /* Test commutativity of add. */
+ secp256k1_scalar_t r1, r2;
+ secp256k1_scalar_add(&r1, &s1, &s2);
+ secp256k1_scalar_add(&r2, &s2, &s1);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ /* Test commutativity of mul. */
+ secp256k1_scalar_t r1, r2;
+ secp256k1_scalar_mul(&r1, &s1, &s2);
+ secp256k1_scalar_mul(&r2, &s2, &s1);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ /* Test associativity of add. */
+ secp256k1_scalar_t r1, r2;
+ secp256k1_scalar_add(&r1, &s1, &s2);
+ secp256k1_scalar_add(&r1, &r1, &s);
+ secp256k1_scalar_add(&r2, &s2, &s);
+ secp256k1_scalar_add(&r2, &s1, &r2);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ /* Test associativity of mul. */
+ secp256k1_scalar_t r1, r2;
+ secp256k1_scalar_mul(&r1, &s1, &s2);
+ secp256k1_scalar_mul(&r1, &r1, &s);
+ secp256k1_scalar_mul(&r2, &s2, &s);
+ secp256k1_scalar_mul(&r2, &s1, &r2);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ /* Test distributitivity of mul over add. */
+ secp256k1_scalar_t r1, r2, t;
+ secp256k1_scalar_add(&r1, &s1, &s2);
+ secp256k1_scalar_mul(&r1, &r1, &s);
+ secp256k1_scalar_mul(&r2, &s1, &s);
+ secp256k1_scalar_mul(&t, &s2, &s);
+ secp256k1_scalar_add(&r2, &r2, &t);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ /* Test square. */
+ secp256k1_scalar_t r1, r2;
+ secp256k1_scalar_sqr(&r1, &s1);
+ secp256k1_scalar_mul(&r2, &s1, &s1);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+}
+
+void run_scalar_tests(void) {
+ for (int i = 0; i < 128 * count; i++) {
+ scalar_test();
+ }
+}
+
+/***** FIELD TESTS *****/
+
+void random_fe(secp256k1_fe_t *x) {
+ unsigned char bin[32];
+ secp256k1_rand256(bin);
+ secp256k1_fe_set_b32(x, bin);
+}
+
+void random_fe_non_zero(secp256k1_fe_t *nz) {
+ int tries = 10;
+ while (--tries >= 0) {
+ random_fe(nz);
+ secp256k1_fe_normalize(nz);
+ if (!secp256k1_fe_is_zero(nz))
+ break;
+ }
+ /* Infinitesimal probability of spurious failure here */
+ CHECK(tries >= 0);
+}
+
+void random_fe_non_square(secp256k1_fe_t *ns) {
+ random_fe_non_zero(ns);
+ secp256k1_fe_t r;
+ if (secp256k1_fe_sqrt(&r, ns)) {
+ secp256k1_fe_negate(ns, ns, 1);
+ }
+}
+
+int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
+ secp256k1_fe_t an = *a; secp256k1_fe_normalize(&an);
+ secp256k1_fe_t bn = *b; secp256k1_fe_normalize(&bn);
+ return secp256k1_fe_equal(&an, &bn);
+}
+
+int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) {
+ secp256k1_fe_t x; secp256k1_fe_mul(&x, a, ai);
+ secp256k1_fe_t one; secp256k1_fe_set_int(&one, 1);
+ return check_fe_equal(&x, &one);
+}
+
+void run_field_inv(void) {
+ secp256k1_fe_t x, xi, xii;
+ for (int i=0; i<10*count; i++) {
+ random_fe_non_zero(&x);
+ secp256k1_fe_inv(&xi, &x);
+ CHECK(check_fe_inverse(&x, &xi));
+ secp256k1_fe_inv(&xii, &xi);
+ CHECK(check_fe_equal(&x, &xii));
+ }
+}
+
+void run_field_inv_var(void) {
+ secp256k1_fe_t x, xi, xii;
+ for (int i=0; i<10*count; i++) {
+ random_fe_non_zero(&x);
+ secp256k1_fe_inv_var(&xi, &x);
+ CHECK(check_fe_inverse(&x, &xi));
+ secp256k1_fe_inv_var(&xii, &xi);
+ CHECK(check_fe_equal(&x, &xii));
+ }
+}
+
+void run_field_inv_all(void) {
+ secp256k1_fe_t x[16], xi[16], xii[16];
+ /* Check it's safe to call for 0 elements */
+ secp256k1_fe_inv_all(0, xi, x);
+ for (int i=0; i<count; i++) {
+ size_t len = (secp256k1_rand32() & 15) + 1;
+ for (size_t j=0; j<len; j++)
+ random_fe_non_zero(&x[j]);
+ secp256k1_fe_inv_all(len, xi, x);
+ for (size_t j=0; j<len; j++)
+ CHECK(check_fe_inverse(&x[j], &xi[j]));
+ secp256k1_fe_inv_all(len, xii, xi);
+ for (size_t j=0; j<len; j++)
+ CHECK(check_fe_equal(&x[j], &xii[j]));
+ }
+}
+
+void run_field_inv_all_var(void) {
+ secp256k1_fe_t x[16], xi[16], xii[16];
+ /* Check it's safe to call for 0 elements */
+ secp256k1_fe_inv_all_var(0, xi, x);
+ for (int i=0; i<count; i++) {
+ size_t len = (secp256k1_rand32() & 15) + 1;
+ for (size_t j=0; j<len; j++)
+ random_fe_non_zero(&x[j]);
+ secp256k1_fe_inv_all_var(len, xi, x);
+ for (size_t j=0; j<len; j++)
+ CHECK(check_fe_inverse(&x[j], &xi[j]));
+ secp256k1_fe_inv_all_var(len, xii, xi);
+ for (size_t j=0; j<len; j++)
+ CHECK(check_fe_equal(&x[j], &xii[j]));
+ }
+}
+
+void run_sqr(void) {
+ secp256k1_fe_t x, s;
+
+ {
+ secp256k1_fe_set_int(&x, 1);
+ secp256k1_fe_negate(&x, &x, 1);
+
+ for (int i=1; i<=512; ++i) {
+ secp256k1_fe_mul_int(&x, 2);
+ secp256k1_fe_normalize(&x);
+ secp256k1_fe_sqr(&s, &x);
+ }
+ }
+}
+
+void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
+ secp256k1_fe_t r1, r2;
+ int v = secp256k1_fe_sqrt(&r1, a);
+ CHECK((v == 0) == (k == NULL));
+
+ if (k != NULL) {
+ /* Check that the returned root is +/- the given known answer */
+ secp256k1_fe_negate(&r2, &r1, 1);
+ secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k);
+ secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2);
+ CHECK(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2));
+ }
+}
+
+void run_sqrt(void) {
+ secp256k1_fe_t ns, x, s, t;
+
+ /* Check sqrt(0) is 0 */
+ secp256k1_fe_set_int(&x, 0);
+ secp256k1_fe_sqr(&s, &x);
+ test_sqrt(&s, &x);
+
+ /* Check sqrt of small squares (and their negatives) */
+ for (int i=1; i<=100; i++) {
+ secp256k1_fe_set_int(&x, i);
+ secp256k1_fe_sqr(&s, &x);
+ test_sqrt(&s, &x);
+ secp256k1_fe_negate(&t, &s, 1);
+ test_sqrt(&t, NULL);
+ }
+
+ /* Consistency checks for large random values */
+ for (int i=0; i<10; i++) {
+ random_fe_non_square(&ns);
+ for (int j=0; j<count; j++) {
+ random_fe(&x);
+ secp256k1_fe_sqr(&s, &x);
+ test_sqrt(&s, &x);
+ secp256k1_fe_negate(&t, &s, 1);
+ test_sqrt(&t, NULL);
+ secp256k1_fe_mul(&t, &s, &ns);
+ test_sqrt(&t, NULL);
+ }
+ }
+}
+
+/***** GROUP TESTS *****/
+
+int ge_equals_ge(const secp256k1_ge_t *a, const secp256k1_ge_t *b) {
+ if (a->infinity && b->infinity)
+ return 1;
+ return check_fe_equal(&a->x, &b->x) && check_fe_equal(&a->y, &b->y);
+}
+
+void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) {
+ secp256k1_ge_t bb;
+ secp256k1_gej_t bj = *b;
+ secp256k1_ge_set_gej_var(&bb, &bj);
+ CHECK(ge_equals_ge(a, &bb));
+}
+
+void gej_equals_gej(const secp256k1_gej_t *a, const secp256k1_gej_t *b) {
+ secp256k1_ge_t aa, bb;
+ secp256k1_gej_t aj = *a, bj = *b;
+ secp256k1_ge_set_gej_var(&aa, &aj);
+ secp256k1_ge_set_gej_var(&bb, &bj);
+ CHECK(ge_equals_ge(&aa, &bb));
+}
+
+void test_ge(void) {
+ secp256k1_ge_t a, b, i, n;
+ random_group_element_test(&a);
+ random_group_element_test(&b);
+ n = a;
+ secp256k1_fe_normalize(&a.y);
+ secp256k1_fe_negate(&n.y, &a.y, 1);
+ secp256k1_ge_set_infinity(&i);
+ random_field_element_magnitude(&a.x);
+ random_field_element_magnitude(&a.y);
+ random_field_element_magnitude(&b.x);
+ random_field_element_magnitude(&b.y);
+ random_field_element_magnitude(&n.x);
+ random_field_element_magnitude(&n.y);
+
+ secp256k1_gej_t aj, bj, ij, nj;
+ random_group_element_jacobian_test(&aj, &a);
+ random_group_element_jacobian_test(&bj, &b);
+ secp256k1_gej_set_infinity(&ij);
+ random_group_element_jacobian_test(&nj, &n);
+ random_field_element_magnitude(&aj.x);
+ random_field_element_magnitude(&aj.y);
+ random_field_element_magnitude(&aj.z);
+ random_field_element_magnitude(&bj.x);
+ random_field_element_magnitude(&bj.y);
+ random_field_element_magnitude(&bj.z);
+ random_field_element_magnitude(&nj.x);
+ random_field_element_magnitude(&nj.y);
+ random_field_element_magnitude(&nj.z);
+
+ /* gej + gej adds */
+ secp256k1_gej_t aaj; secp256k1_gej_add_var(&aaj, &aj, &aj);
+ secp256k1_gej_t abj; secp256k1_gej_add_var(&abj, &aj, &bj);
+ secp256k1_gej_t aij; secp256k1_gej_add_var(&aij, &aj, &ij);
+ secp256k1_gej_t anj; secp256k1_gej_add_var(&anj, &aj, &nj);
+ secp256k1_gej_t iaj; secp256k1_gej_add_var(&iaj, &ij, &aj);
+ secp256k1_gej_t iij; secp256k1_gej_add_var(&iij, &ij, &ij);
+
+ /* gej + ge adds */
+ secp256k1_gej_t aa; secp256k1_gej_add_ge_var(&aa, &aj, &a);
+ secp256k1_gej_t ab; secp256k1_gej_add_ge_var(&ab, &aj, &b);
+ secp256k1_gej_t ai; secp256k1_gej_add_ge_var(&ai, &aj, &i);
+ secp256k1_gej_t an; secp256k1_gej_add_ge_var(&an, &aj, &n);
+ secp256k1_gej_t ia; secp256k1_gej_add_ge_var(&ia, &ij, &a);
+ secp256k1_gej_t ii; secp256k1_gej_add_ge_var(&ii, &ij, &i);
+
+ /* const gej + ge adds */
+ secp256k1_gej_t aac; secp256k1_gej_add_ge(&aac, &aj, &a);
+ secp256k1_gej_t abc; secp256k1_gej_add_ge(&abc, &aj, &b);
+ secp256k1_gej_t anc; secp256k1_gej_add_ge(&anc, &aj, &n);
+ secp256k1_gej_t iac; secp256k1_gej_add_ge(&iac, &ij, &a);
+
+ CHECK(secp256k1_gej_is_infinity(&an));
+ CHECK(secp256k1_gej_is_infinity(&anj));
+ CHECK(secp256k1_gej_is_infinity(&anc));
+ gej_equals_gej(&aa, &aaj);
+ gej_equals_gej(&aa, &aac);
+ gej_equals_gej(&ab, &abj);
+ gej_equals_gej(&ab, &abc);
+ gej_equals_gej(&an, &anj);
+ gej_equals_gej(&an, &anc);
+ gej_equals_gej(&ia, &iaj);
+ gej_equals_gej(&ai, &aij);
+ gej_equals_gej(&ii, &iij);
+ ge_equals_gej(&a, &ai);
+ ge_equals_gej(&a, &ai);
+ ge_equals_gej(&a, &iaj);
+ ge_equals_gej(&a, &iaj);
+ ge_equals_gej(&a, &iac);
+}
+
+void run_ge(void) {
+ for (int i = 0; i < 2000*count; i++) {
+ test_ge();
+ }
+}
+
+/***** ECMULT TESTS *****/
+
+void run_ecmult_chain(void) {
+ /* random starting point A (on the curve) */
+ secp256k1_fe_t ax; secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64);
+ secp256k1_fe_t ay; secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64);
+ secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay);
+ /* two random initial factors xn and gn */
+ secp256k1_num_t xn;
+ secp256k1_num_set_hex(&xn, "84cc5452f7fde1edb4d38a8ce9b1b84ccef31f146e569be9705d357a42985407", 64);
+ secp256k1_num_t gn;
+ secp256k1_num_set_hex(&gn, "a1e58d22553dcd42b23980625d4c57a96e9323d42b3152e5ca2c3990edc7c9de", 64);
+ /* two small multipliers to be applied to xn and gn in every iteration: */
+ secp256k1_num_t xf;
+ secp256k1_num_set_hex(&xf, "1337", 4);
+ secp256k1_num_t gf;
+ secp256k1_num_set_hex(&gf, "7113", 4);
+ /* accumulators with the resulting coefficients to A and G */
+ secp256k1_num_t ae;
+ secp256k1_num_set_int(&ae, 1);
+ secp256k1_num_t ge;
+ secp256k1_num_set_int(&ge, 0);
+ /* the point being computed */
+ secp256k1_gej_t x = a;
+ const secp256k1_num_t *order = &secp256k1_ge_consts->order;
+ for (int i=0; i<200*count; i++) {
+ /* in each iteration, compute X = xn*X + gn*G; */
+ secp256k1_ecmult(&x, &x, &xn, &gn);
+ /* also compute ae and ge: the actual accumulated factors for A and G */
+ /* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */
+ secp256k1_num_mod_mul(&ae, &ae, &xn, order);
+ secp256k1_num_mod_mul(&ge, &ge, &xn, order);
+ secp256k1_num_add(&ge, &ge, &gn);
+ secp256k1_num_mod(&ge, order);
+ /* modify xn and gn */
+ secp256k1_num_mod_mul(&xn, &xn, &xf, order);
+ secp256k1_num_mod_mul(&gn, &gn, &gf, order);
+
+ /* verify */
+ if (i == 19999) {
+ char res[132]; int resl = 132;
+ secp256k1_gej_get_hex(res, &resl, &x);
+ CHECK(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0);
+ }
+ }
+ /* redo the computation, but directly with the resulting ae and ge coefficients: */
+ secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge);
+ char res[132]; int resl = 132;
+ char res2[132]; int resl2 = 132;
+ secp256k1_gej_get_hex(res, &resl, &x);
+ secp256k1_gej_get_hex(res2, &resl2, &x2);
+ CHECK(strcmp(res, res2) == 0);
+ CHECK(strlen(res) == 131);
+}
+
+void test_point_times_order(const secp256k1_gej_t *point) {
+ /* multiplying a point by the order results in O */
+ const secp256k1_num_t *order = &secp256k1_ge_consts->order;
+ secp256k1_num_t zero;
+ secp256k1_num_set_int(&zero, 0);
+ secp256k1_gej_t res;
+ secp256k1_ecmult(&res, point, order, order); /* calc res = order * point + order * G; */
+ CHECK(secp256k1_gej_is_infinity(&res));
+}
+
+void run_point_times_order(void) {
+ secp256k1_fe_t x; secp256k1_fe_set_hex(&x, "02", 2);
+ for (int i=0; i<500; i++) {
+ secp256k1_ge_t p;
+ if (secp256k1_ge_set_xo(&p, &x, 1)) {
+ CHECK(secp256k1_ge_is_valid(&p));
+ secp256k1_gej_t j;
+ secp256k1_gej_set_ge(&j, &p);
+ CHECK(secp256k1_gej_is_valid(&j));
+ test_point_times_order(&j);
+ }
+ secp256k1_fe_sqr(&x, &x);
+ }
+ char c[65]; int cl=65;
+ secp256k1_fe_get_hex(c, &cl, &x);
+ CHECK(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0);
+}
+
+void test_wnaf(const secp256k1_num_t *number, int w) {
+ secp256k1_num_t x, two, t;
+ secp256k1_num_set_int(&x, 0);
+ secp256k1_num_set_int(&two, 2);
+ int wnaf[257];
+ int bits = secp256k1_ecmult_wnaf(wnaf, number, w);
+ int zeroes = -1;
+ for (int i=bits-1; i>=0; i--) {
+ secp256k1_num_mul(&x, &x, &two);
+ int v = wnaf[i];
+ if (v) {
+ CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */
+ zeroes=0;
+ CHECK((v & 1) == 1); /* check non-zero elements are odd */
+ CHECK(v <= (1 << (w-1)) - 1); /* check range below */
+ CHECK(v >= -(1 << (w-1)) - 1); /* check range above */
+ } else {
+ CHECK(zeroes != -1); /* check that no unnecessary zero padding exists */
+ zeroes++;
+ }
+ secp256k1_num_set_int(&t, v);
+ secp256k1_num_add(&x, &x, &t);
+ }
+ CHECK(secp256k1_num_eq(&x, number)); /* check that wnaf represents number */
+}
+
+void run_wnaf(void) {
+ secp256k1_num_t n;
+ for (int i=0; i<count; i++) {
+ random_num_order(&n);
+ if (i % 1)
+ secp256k1_num_negate(&n);
+ test_wnaf(&n, 4+(i%10));
+ }
+}
+
+void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *key, const secp256k1_scalar_t *msg, int *recid) {
+ secp256k1_scalar_t nonce;
+ do {
+ random_scalar_order_test(&nonce);
+ } while(!secp256k1_ecdsa_sig_sign(sig, key, msg, &nonce, recid));
+}
+
+void test_ecdsa_sign_verify(void) {
+ secp256k1_scalar_t msg, key;
+ random_scalar_order_test(&msg);
+ random_scalar_order_test(&key);
+ secp256k1_gej_t pubj; secp256k1_ecmult_gen(&pubj, &key);
+ secp256k1_ge_t pub; secp256k1_ge_set_gej(&pub, &pubj);
+ secp256k1_ecdsa_sig_t sig;
+ random_sign(&sig, &key, &msg, NULL);
+ secp256k1_num_t msg_num;
+ secp256k1_scalar_get_num(&msg_num, &msg);
+ CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg_num));
+ secp256k1_num_inc(&msg_num);
+ CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg_num));
+}
+
+void run_ecdsa_sign_verify(void) {
+ for (int i=0; i<10*count; i++) {
+ test_ecdsa_sign_verify();
+ }
+}
+
+void test_ecdsa_end_to_end(void) {
+ unsigned char privkey[32];
+ unsigned char message[32];
+
+ /* Generate a random key and message. */
+ {
+ secp256k1_num_t msg, key;
+ random_num_order_test(&msg);
+ random_num_order_test(&key);
+ secp256k1_num_get_bin(privkey, 32, &key);
+ secp256k1_num_get_bin(message, 32, &msg);
+ }
+
+ /* Construct and verify corresponding public key. */
+ CHECK(secp256k1_ec_seckey_verify(privkey) == 1);
+ unsigned char pubkey[65]; int pubkeylen = 65;
+ CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, secp256k1_rand32() % 2) == 1);
+ CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen));
+
+ /* Verify private key import and export. */
+ unsigned char seckey[300]; int seckeylen = 300;
+ CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1);
+ unsigned char privkey2[32];
+ CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1);
+ CHECK(memcmp(privkey, privkey2, 32) == 0);
+
+ /* Optionally tweak the keys using addition. */
+ if (secp256k1_rand32() % 3 == 0) {
+ unsigned char rnd[32];
+ secp256k1_rand256_test(rnd);
+ int ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd);
+ int ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd);
+ CHECK(ret1 == ret2);
+ if (ret1 == 0) return;
+ unsigned char pubkey2[65]; int pubkeylen2 = 65;
+ CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
+ CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
+ }
+
+ /* Optionally tweak the keys using multiplication. */
+ if (secp256k1_rand32() % 3 == 0) {
+ unsigned char rnd[32];
+ secp256k1_rand256_test(rnd);
+ int ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd);
+ int ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd);
+ CHECK(ret1 == ret2);
+ if (ret1 == 0) return;
+ unsigned char pubkey2[65]; int pubkeylen2 = 65;
+ CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
+ CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
+ }
+
+ /* Sign. */
+ unsigned char signature[72]; int signaturelen = 72;
+ while(1) {
+ unsigned char rnd[32];
+ secp256k1_rand256_test(rnd);
+ if (secp256k1_ecdsa_sign(message, 32, signature, &signaturelen, privkey, rnd) == 1) {
+ break;
+ }
+ }
+ /* Verify. */
+ CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) == 1);
+ /* Destroy signature and verify again. */
+ signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255);
+ CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) != 1);
+
+ /* Compact sign. */
+ unsigned char csignature[64]; int recid = 0;
+ while(1) {
+ unsigned char rnd[32];
+ secp256k1_rand256_test(rnd);
+ if (secp256k1_ecdsa_sign_compact(message, 32, csignature, privkey, rnd, &recid) == 1) {
+ break;
+ }
+ }
+ /* Recover. */
+ unsigned char recpubkey[65]; int recpubkeylen = 0;
+ CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1);
+ CHECK(recpubkeylen == pubkeylen);
+ CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0);
+ /* Destroy signature and verify again. */
+ csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
+ CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) != 1 ||
+ memcmp(pubkey, recpubkey, pubkeylen) != 0);
+ CHECK(recpubkeylen == pubkeylen);
+
+}
+
+void run_ecdsa_end_to_end(void) {
+ for (int i=0; i<64*count; i++) {
+ test_ecdsa_end_to_end();
+ }
+}
+
+void test_ecdsa_infinity(void) {
+ const unsigned char msg32[32] = {
+ 'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
+ 'a', ' ', 'v', 'e', 'r', 'y', ' ', 's',
+ 'e', 'c', 'r', 'e', 't', ' ', 'm', 'e',
+ 's', 's', 'a', 'g', 'e', '.', '.', '.'
+ };
+ const unsigned char sig64[64] = {
+ // Generated by signing the above message with nonce 'This is the nonce we will use...'
+ // and secret key 0 (which is not valid), resulting in recid 0.
+ 0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8,
+ 0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96,
+ 0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63,
+ 0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32,
+ 0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E,
+ 0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD,
+ 0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86,
+ 0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
+ };
+ unsigned char pubkey[65];
+ int pubkeylen = 65;
+ CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 0));
+ CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 1));
+ CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 2));
+ CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 3));
+}
+
+void run_ecdsa_infinity(void) {
+ test_ecdsa_infinity();
+}
+
+#ifdef ENABLE_OPENSSL_TESTS
+EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) {
+ unsigned char privkey[300];
+ int privkeylen;
+ int compr = secp256k1_rand32() & 1;
+ const unsigned char* pbegin = privkey;
+ EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
+ CHECK(secp256k1_eckey_privkey_serialize(privkey, &privkeylen, key, compr));
+ CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
+ CHECK(EC_KEY_check_key(ec_key));
+ return ec_key;
+}
+
+void test_ecdsa_openssl(void) {
+ secp256k1_scalar_t key, msg;
+ unsigned char message[32];
+ secp256k1_rand256_test(message);
+ secp256k1_scalar_set_b32(&msg, message, NULL);
+ random_scalar_order_test(&key);
+ secp256k1_gej_t qj;
+ secp256k1_ecmult_gen(&qj, &key);
+ secp256k1_ge_t q;
+ secp256k1_ge_set_gej(&q, &qj);
+ EC_KEY *ec_key = get_openssl_key(&key);
+ CHECK(ec_key);
+ unsigned char signature[80];
+ unsigned int sigsize = 80;
+ CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key));
+ secp256k1_ecdsa_sig_t sig;
+ CHECK(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize));
+ secp256k1_num_t msg_num;
+ secp256k1_scalar_get_num(&msg_num, &msg);
+ CHECK(secp256k1_ecdsa_sig_verify(&sig, &q, &msg_num));
+ secp256k1_num_inc(&sig.r);
+ CHECK(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg_num));
+
+ random_sign(&sig, &key, &msg, NULL);
+ int secp_sigsize = 80;
+ CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sig));
+ CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1);
+
+ EC_KEY_free(ec_key);
+}
+
+void run_ecdsa_openssl(void) {
+ for (int i=0; i<10*count; i++) {
+ test_ecdsa_openssl();
+ }
+}
+#endif
+
+int main(int argc, char **argv) {
+ /* find iteration count */
+ if (argc > 1) {
+ count = strtol(argv[1], NULL, 0);
+ }
+
+ /* find random seed */
+ uint64_t seed;
+ if (argc > 2) {
+ seed = strtoull(argv[2], NULL, 0);
+ } else {
+ FILE *frand = fopen("/dev/urandom", "r");
+ if (!frand || !fread(&seed, sizeof(seed), 1, frand)) {
+ seed = time(NULL) * 1337;
+ }
+ fclose(frand);
+ }
+ secp256k1_rand_seed(seed);
+
+ printf("test count = %i\n", count);
+ printf("random seed = %llu\n", (unsigned long long)seed);
+
+ /* initialize */
+ secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY);
+
+ /* num tests */
+ run_num_smalltests();
+
+ /* scalar tests */
+ run_scalar_tests();
+
+ /* field tests */
+ run_field_inv();
+ run_field_inv_var();
+ run_field_inv_all();
+ run_field_inv_all_var();
+ run_sqr();
+ run_sqrt();
+
+ /* group tests */
+ run_ge();
+
+ /* ecmult tests */
+ run_wnaf();
+ run_point_times_order();
+ run_ecmult_chain();
+
+ /* ecdsa tests */
+ run_ecdsa_sign_verify();
+ run_ecdsa_end_to_end();
+ run_ecdsa_infinity();
+#ifdef ENABLE_OPENSSL_TESTS
+ run_ecdsa_openssl();
+#endif
+
+ printf("random run = %llu\n", (unsigned long long)secp256k1_rand32() + ((unsigned long long)secp256k1_rand32() << 32));
+
+ /* shutdown */
+ secp256k1_stop();
+ return 0;
+}