diff options
Diffstat (limited to 'src/test/versionbits_tests.cpp')
-rw-r--r-- | src/test/versionbits_tests.cpp | 456 |
1 files changed, 456 insertions, 0 deletions
diff --git a/src/test/versionbits_tests.cpp b/src/test/versionbits_tests.cpp new file mode 100644 index 0000000000..bf87812a8a --- /dev/null +++ b/src/test/versionbits_tests.cpp @@ -0,0 +1,456 @@ +// Copyright (c) 2014-2021 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include <chain.h> +#include <chainparams.h> +#include <consensus/params.h> +#include <deploymentstatus.h> +#include <test/util/setup_common.h> +#include <validation.h> +#include <versionbits.h> + +#include <boost/test/unit_test.hpp> + +/* Define a virtual block time, one block per 10 minutes after Nov 14 2014, 0:55:36am */ +static int32_t TestTime(int nHeight) { return 1415926536 + 600 * nHeight; } + +static const std::string StateName(ThresholdState state) +{ + switch (state) { + case ThresholdState::DEFINED: return "DEFINED"; + case ThresholdState::STARTED: return "STARTED"; + case ThresholdState::LOCKED_IN: return "LOCKED_IN"; + case ThresholdState::ACTIVE: return "ACTIVE"; + case ThresholdState::FAILED: return "FAILED"; + } // no default case, so the compiler can warn about missing cases + return ""; +} + +static const Consensus::Params paramsDummy = Consensus::Params(); + +class TestConditionChecker : public AbstractThresholdConditionChecker +{ +private: + mutable ThresholdConditionCache cache; + +public: + int64_t BeginTime(const Consensus::Params& params) const override { return TestTime(10000); } + int64_t EndTime(const Consensus::Params& params) const override { return TestTime(20000); } + int Period(const Consensus::Params& params) const override { return 1000; } + int Threshold(const Consensus::Params& params) const override { return 900; } + bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const override { return (pindex->nVersion & 0x100); } + + ThresholdState GetStateFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateFor(pindexPrev, paramsDummy, cache); } + int GetStateSinceHeightFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateSinceHeightFor(pindexPrev, paramsDummy, cache); } +}; + +class TestDelayedActivationConditionChecker : public TestConditionChecker +{ +public: + int MinActivationHeight(const Consensus::Params& params) const override { return 15000; } +}; + +class TestAlwaysActiveConditionChecker : public TestConditionChecker +{ +public: + int64_t BeginTime(const Consensus::Params& params) const override { return Consensus::BIP9Deployment::ALWAYS_ACTIVE; } +}; + +class TestNeverActiveConditionChecker : public TestConditionChecker +{ +public: + int64_t BeginTime(const Consensus::Params& params) const override { return Consensus::BIP9Deployment::NEVER_ACTIVE; } +}; + +#define CHECKERS 6 + +class VersionBitsTester +{ + // A fake blockchain + std::vector<CBlockIndex*> vpblock; + + // 6 independent checkers for the same bit. + // The first one performs all checks, the second only 50%, the third only 25%, etc... + // This is to test whether lack of cached information leads to the same results. + TestConditionChecker checker[CHECKERS]; + // Another 6 that assume delayed activation + TestDelayedActivationConditionChecker checker_delayed[CHECKERS]; + // Another 6 that assume always active activation + TestAlwaysActiveConditionChecker checker_always[CHECKERS]; + // Another 6 that assume never active activation + TestNeverActiveConditionChecker checker_never[CHECKERS]; + + // Test counter (to identify failures) + int num{1000}; + +public: + VersionBitsTester& Reset() { + // Have each group of tests be counted by the 1000s part, starting at 1000 + num = num - (num % 1000) + 1000; + + for (unsigned int i = 0; i < vpblock.size(); i++) { + delete vpblock[i]; + } + for (unsigned int i = 0; i < CHECKERS; i++) { + checker[i] = TestConditionChecker(); + checker_delayed[i] = TestDelayedActivationConditionChecker(); + checker_always[i] = TestAlwaysActiveConditionChecker(); + checker_never[i] = TestNeverActiveConditionChecker(); + } + vpblock.clear(); + return *this; + } + + ~VersionBitsTester() { + Reset(); + } + + VersionBitsTester& Mine(unsigned int height, int32_t nTime, int32_t nVersion) { + while (vpblock.size() < height) { + CBlockIndex* pindex = new CBlockIndex(); + pindex->nHeight = vpblock.size(); + pindex->pprev = Tip(); + pindex->nTime = nTime; + pindex->nVersion = nVersion; + pindex->BuildSkip(); + vpblock.push_back(pindex); + } + return *this; + } + + VersionBitsTester& TestStateSinceHeight(int height) + { + return TestStateSinceHeight(height, height); + } + + VersionBitsTester& TestStateSinceHeight(int height, int height_delayed) + { + const CBlockIndex* tip = Tip(); + for (int i = 0; i < CHECKERS; i++) { + if (InsecureRandBits(i) == 0) { + BOOST_CHECK_MESSAGE(checker[i].GetStateSinceHeightFor(tip) == height, strprintf("Test %i for StateSinceHeight", num)); + BOOST_CHECK_MESSAGE(checker_delayed[i].GetStateSinceHeightFor(tip) == height_delayed, strprintf("Test %i for StateSinceHeight (delayed)", num)); + BOOST_CHECK_MESSAGE(checker_always[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (always active)", num)); + BOOST_CHECK_MESSAGE(checker_never[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (never active)", num)); + } + } + num++; + return *this; + } + + VersionBitsTester& TestState(ThresholdState exp) + { + return TestState(exp, exp); + } + + VersionBitsTester& TestState(ThresholdState exp, ThresholdState exp_delayed) + { + if (exp != exp_delayed) { + // only expected differences are that delayed stays in locked_in longer + BOOST_CHECK_EQUAL(exp, ThresholdState::ACTIVE); + BOOST_CHECK_EQUAL(exp_delayed, ThresholdState::LOCKED_IN); + } + + const CBlockIndex* pindex = Tip(); + for (int i = 0; i < CHECKERS; i++) { + if (InsecureRandBits(i) == 0) { + ThresholdState got = checker[i].GetStateFor(pindex); + ThresholdState got_delayed = checker_delayed[i].GetStateFor(pindex); + ThresholdState got_always = checker_always[i].GetStateFor(pindex); + ThresholdState got_never = checker_never[i].GetStateFor(pindex); + // nHeight of the next block. If vpblock is empty, the next (ie first) + // block should be the genesis block with nHeight == 0. + int height = pindex == nullptr ? 0 : pindex->nHeight + 1; + BOOST_CHECK_MESSAGE(got == exp, strprintf("Test %i for %s height %d (got %s)", num, StateName(exp), height, StateName(got))); + BOOST_CHECK_MESSAGE(got_delayed == exp_delayed, strprintf("Test %i for %s height %d (got %s; delayed case)", num, StateName(exp_delayed), height, StateName(got_delayed))); + BOOST_CHECK_MESSAGE(got_always == ThresholdState::ACTIVE, strprintf("Test %i for ACTIVE height %d (got %s; always active case)", num, height, StateName(got_always))); + BOOST_CHECK_MESSAGE(got_never == ThresholdState::FAILED, strprintf("Test %i for FAILED height %d (got %s; never active case)", num, height, StateName(got_never))); + } + } + num++; + return *this; + } + + VersionBitsTester& TestDefined() { return TestState(ThresholdState::DEFINED); } + VersionBitsTester& TestStarted() { return TestState(ThresholdState::STARTED); } + VersionBitsTester& TestLockedIn() { return TestState(ThresholdState::LOCKED_IN); } + VersionBitsTester& TestActive() { return TestState(ThresholdState::ACTIVE); } + VersionBitsTester& TestFailed() { return TestState(ThresholdState::FAILED); } + + // non-delayed should be active; delayed should still be locked in + VersionBitsTester& TestActiveDelayed() { return TestState(ThresholdState::ACTIVE, ThresholdState::LOCKED_IN); } + + CBlockIndex* Tip() { return vpblock.empty() ? nullptr : vpblock.back(); } +}; + +BOOST_FIXTURE_TEST_SUITE(versionbits_tests, TestingSetup) + +BOOST_AUTO_TEST_CASE(versionbits_test) +{ + for (int i = 0; i < 64; i++) { + // DEFINED -> STARTED after timeout reached -> FAILED + VersionBitsTester().TestDefined().TestStateSinceHeight(0) + .Mine(1, TestTime(1), 0x100).TestDefined().TestStateSinceHeight(0) + .Mine(11, TestTime(11), 0x100).TestDefined().TestStateSinceHeight(0) + .Mine(989, TestTime(989), 0x100).TestDefined().TestStateSinceHeight(0) + .Mine(999, TestTime(20000), 0x100).TestDefined().TestStateSinceHeight(0) // Timeout and start time reached simultaneously + .Mine(1000, TestTime(20000), 0).TestStarted().TestStateSinceHeight(1000) // Hit started, stop signalling + .Mine(1999, TestTime(30001), 0).TestStarted().TestStateSinceHeight(1000) + .Mine(2000, TestTime(30002), 0x100).TestFailed().TestStateSinceHeight(2000) // Hit failed, start signalling again + .Mine(2001, TestTime(30003), 0x100).TestFailed().TestStateSinceHeight(2000) + .Mine(2999, TestTime(30004), 0x100).TestFailed().TestStateSinceHeight(2000) + .Mine(3000, TestTime(30005), 0x100).TestFailed().TestStateSinceHeight(2000) + .Mine(4000, TestTime(30006), 0x100).TestFailed().TestStateSinceHeight(2000) + + // DEFINED -> STARTED -> FAILED + .Reset().TestDefined().TestStateSinceHeight(0) + .Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0) + .Mine(1000, TestTime(10000) - 1, 0x100).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined + .Mine(2000, TestTime(10000), 0x100).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period + .Mine(2051, TestTime(10010), 0).TestStarted().TestStateSinceHeight(2000) // 51 old blocks + .Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 899 new blocks + .Mine(3000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(3000) // 50 old blocks (so 899 out of the past 1000) + .Mine(4000, TestTime(20010), 0x100).TestFailed().TestStateSinceHeight(3000) + + // DEFINED -> STARTED -> LOCKEDIN after timeout reached -> ACTIVE + .Reset().TestDefined().TestStateSinceHeight(0) + .Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0) + .Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined + .Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period + .Mine(2999, TestTime(30000), 0x100).TestStarted().TestStateSinceHeight(2000) // 999 new blocks + .Mine(3000, TestTime(30000), 0x100).TestLockedIn().TestStateSinceHeight(3000) // 1 new block (so 1000 out of the past 1000 are new) + .Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000) + .Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000) + .Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000) + .Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000) + + // DEFINED -> STARTED -> LOCKEDIN before timeout -> ACTIVE + .Reset().TestDefined() + .Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0) + .Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined + .Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period + .Mine(2050, TestTime(10010), 0x200).TestStarted().TestStateSinceHeight(2000) // 50 old blocks + .Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 900 new blocks + .Mine(2999, TestTime(19999), 0x200).TestStarted().TestStateSinceHeight(2000) // 49 old blocks + .Mine(3000, TestTime(29999), 0x200).TestLockedIn().TestStateSinceHeight(3000) // 1 old block (so 900 out of the past 1000) + .Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000) + .Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000) // delayed will not become active until height=15000 + .Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000) + .Mine(15000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000) + .Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000) + + // DEFINED multiple periods -> STARTED multiple periods -> FAILED + .Reset().TestDefined().TestStateSinceHeight(0) + .Mine(999, TestTime(999), 0).TestDefined().TestStateSinceHeight(0) + .Mine(1000, TestTime(1000), 0).TestDefined().TestStateSinceHeight(0) + .Mine(2000, TestTime(2000), 0).TestDefined().TestStateSinceHeight(0) + .Mine(3000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000) + .Mine(4000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000) + .Mine(5000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000) + .Mine(5999, TestTime(20000), 0).TestStarted().TestStateSinceHeight(3000) + .Mine(6000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(6000) + .Mine(7000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000) + .Mine(24000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000) // stay in FAILED no matter how much we signal + ; + } +} + +/** Check that ComputeBlockVersion will set the appropriate bit correctly */ +static void check_computeblockversion(const Consensus::Params& params, Consensus::DeploymentPos dep) +{ + // This implicitly uses g_versionbitscache, so clear it every time + g_versionbitscache.Clear(); + + int64_t bit = params.vDeployments[dep].bit; + int64_t nStartTime = params.vDeployments[dep].nStartTime; + int64_t nTimeout = params.vDeployments[dep].nTimeout; + int min_activation_height = params.vDeployments[dep].min_activation_height; + + // should not be any signalling for first block + BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(nullptr, params), VERSIONBITS_TOP_BITS); + + // always/never active deployments shouldn't need to be tested further + if (nStartTime == Consensus::BIP9Deployment::ALWAYS_ACTIVE || + nStartTime == Consensus::BIP9Deployment::NEVER_ACTIVE) + { + BOOST_CHECK_EQUAL(min_activation_height, 0); + return; + } + + BOOST_REQUIRE(nStartTime < nTimeout); + BOOST_REQUIRE(nStartTime >= 0); + BOOST_REQUIRE(nTimeout <= std::numeric_limits<uint32_t>::max() || nTimeout == Consensus::BIP9Deployment::NO_TIMEOUT); + BOOST_REQUIRE(0 <= bit && bit < 32); + // Make sure that no deployment tries to set an invalid bit. + BOOST_REQUIRE(((1 << bit) & VERSIONBITS_TOP_MASK) == 0); + BOOST_REQUIRE(min_activation_height >= 0); + // Check min_activation_height is on a retarget boundary + BOOST_REQUIRE_EQUAL(min_activation_height % params.nMinerConfirmationWindow, 0U); + + const uint32_t bitmask{g_versionbitscache.Mask(params, dep)}; + BOOST_CHECK_EQUAL(bitmask, uint32_t{1} << bit); + + // In the first chain, test that the bit is set by CBV until it has failed. + // In the second chain, test the bit is set by CBV while STARTED and + // LOCKED-IN, and then no longer set while ACTIVE. + VersionBitsTester firstChain, secondChain; + + int64_t nTime = nStartTime; + + const CBlockIndex *lastBlock = nullptr; + + // Before MedianTimePast of the chain has crossed nStartTime, the bit + // should not be set. + if (nTime == 0) { + // since CBlockIndex::nTime is uint32_t we can't represent any + // earlier time, so will transition from DEFINED to STARTED at the + // end of the first period by mining blocks at nTime == 0 + lastBlock = firstChain.Mine(params.nMinerConfirmationWindow - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0); + lastBlock = firstChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0); + // then we'll keep mining at nStartTime... + } else { + // use a time 1s earlier than start time to check we stay DEFINED + --nTime; + + // Start generating blocks before nStartTime + lastBlock = firstChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0); + + // Mine more blocks (4 less than the adjustment period) at the old time, and check that CBV isn't setting the bit yet. + for (uint32_t i = 1; i < params.nMinerConfirmationWindow - 4; i++) { + lastBlock = firstChain.Mine(params.nMinerConfirmationWindow + i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0); + } + // Now mine 5 more blocks at the start time -- MTP should not have passed yet, so + // CBV should still not yet set the bit. + nTime = nStartTime; + for (uint32_t i = params.nMinerConfirmationWindow - 4; i <= params.nMinerConfirmationWindow; i++) { + lastBlock = firstChain.Mine(params.nMinerConfirmationWindow + i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0); + } + // Next we will advance to the next period and transition to STARTED, + } + + lastBlock = firstChain.Mine(params.nMinerConfirmationWindow * 3, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + // so ComputeBlockVersion should now set the bit, + BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0); + // and should also be using the VERSIONBITS_TOP_BITS. + BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS); + + // Check that ComputeBlockVersion will set the bit until nTimeout + nTime += 600; + uint32_t blocksToMine = params.nMinerConfirmationWindow * 2; // test blocks for up to 2 time periods + uint32_t nHeight = params.nMinerConfirmationWindow * 3; + // These blocks are all before nTimeout is reached. + while (nTime < nTimeout && blocksToMine > 0) { + lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0); + BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS); + blocksToMine--; + nTime += 600; + nHeight += 1; + } + + if (nTimeout != Consensus::BIP9Deployment::NO_TIMEOUT) { + // can reach any nTimeout other than NO_TIMEOUT due to earlier BOOST_REQUIRE + + nTime = nTimeout; + + // finish the last period before we start timing out + while (nHeight % params.nMinerConfirmationWindow != 0) { + lastBlock = firstChain.Mine(nHeight+1, nTime - 1, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0); + nHeight += 1; + } + + // FAILED is only triggered at the end of a period, so CBV should be setting + // the bit until the period transition. + for (uint32_t i = 0; i < params.nMinerConfirmationWindow - 1; i++) { + lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0); + nHeight += 1; + } + // The next block should trigger no longer setting the bit. + lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0); + } + + // On a new chain: + // verify that the bit will be set after lock-in, and then stop being set + // after activation. + nTime = nStartTime; + + // Mine one period worth of blocks, and check that the bit will be on for the + // next period. + lastBlock = secondChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0); + + // Mine another period worth of blocks, signaling the new bit. + lastBlock = secondChain.Mine(params.nMinerConfirmationWindow * 2, nTime, VERSIONBITS_TOP_BITS | (1<<bit)).Tip(); + // After one period of setting the bit on each block, it should have locked in. + // We keep setting the bit for one more period though, until activation. + BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0); + + // Now check that we keep mining the block until the end of this period, and + // then stop at the beginning of the next period. + lastBlock = secondChain.Mine((params.nMinerConfirmationWindow * 3) - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0); + lastBlock = secondChain.Mine(params.nMinerConfirmationWindow * 3, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + + if (lastBlock->nHeight + 1 < min_activation_height) { + // check signalling continues while min_activation_height is not reached + lastBlock = secondChain.Mine(min_activation_height - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0); + // then reach min_activation_height, which was already REQUIRE'd to start a new period + lastBlock = secondChain.Mine(min_activation_height, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); + } + + // Check that we don't signal after activation + BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0); +} + +BOOST_AUTO_TEST_CASE(versionbits_computeblockversion) +{ + // check that any deployment on any chain can conceivably reach both + // ACTIVE and FAILED states in roughly the way we expect + for (const auto& chain_name : {CBaseChainParams::MAIN, CBaseChainParams::TESTNET, CBaseChainParams::SIGNET, CBaseChainParams::REGTEST}) { + const auto chainParams = CreateChainParams(*m_node.args, chain_name); + uint32_t chain_all_vbits{0}; + for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; ++i) { + const auto dep = static_cast<Consensus::DeploymentPos>(i); + // Check that no bits are re-used (within the same chain). This is + // disallowed because the transition to FAILED (on timeout) does + // not take precedence over STARTED/LOCKED_IN. So all softforks on + // the same bit might overlap, even when non-overlapping start-end + // times are picked. + const uint32_t dep_mask{g_versionbitscache.Mask(chainParams->GetConsensus(), dep)}; + BOOST_CHECK(!(chain_all_vbits & dep_mask)); + chain_all_vbits |= dep_mask; + check_computeblockversion(chainParams->GetConsensus(), dep); + } + } + + { + // Use regtest/testdummy to ensure we always exercise some + // deployment that's not always/never active + ArgsManager args; + args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999"); // January 1, 2008 - December 31, 2008 + const auto chainParams = CreateChainParams(args, CBaseChainParams::REGTEST); + check_computeblockversion(chainParams->GetConsensus(), Consensus::DEPLOYMENT_TESTDUMMY); + } + + { + // Use regtest/testdummy to ensure we always exercise the + // min_activation_height test, even if we're not using that in a + // live deployment + ArgsManager args; + args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999:403200"); // January 1, 2008 - December 31, 2008, min act height 403200 + const auto chainParams = CreateChainParams(args, CBaseChainParams::REGTEST); + check_computeblockversion(chainParams->GetConsensus(), Consensus::DEPLOYMENT_TESTDUMMY); + } +} + +BOOST_AUTO_TEST_SUITE_END() |