aboutsummaryrefslogtreecommitdiff
path: root/src/test/fuzz/crypto_chacha20poly1305.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/test/fuzz/crypto_chacha20poly1305.cpp')
-rw-r--r--src/test/fuzz/crypto_chacha20poly1305.cpp200
1 files changed, 200 insertions, 0 deletions
diff --git a/src/test/fuzz/crypto_chacha20poly1305.cpp b/src/test/fuzz/crypto_chacha20poly1305.cpp
new file mode 100644
index 0000000000..0700ba7fb6
--- /dev/null
+++ b/src/test/fuzz/crypto_chacha20poly1305.cpp
@@ -0,0 +1,200 @@
+// Copyright (c) 2020-2021 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#include <crypto/chacha20poly1305.h>
+#include <random.h>
+#include <span.h>
+#include <test/fuzz/FuzzedDataProvider.h>
+#include <test/fuzz/fuzz.h>
+#include <test/fuzz/util.h>
+
+#include <cstddef>
+#include <cstdint>
+#include <vector>
+
+constexpr static inline void crypt_till_rekey(FSChaCha20Poly1305& aead, int rekey_interval, bool encrypt)
+{
+ for (int i = 0; i < rekey_interval; ++i) {
+ std::byte dummy_tag[FSChaCha20Poly1305::EXPANSION] = {{}};
+ if (encrypt) {
+ aead.Encrypt(Span{dummy_tag}.first(0), Span{dummy_tag}.first(0), dummy_tag);
+ } else {
+ aead.Decrypt(dummy_tag, Span{dummy_tag}.first(0), Span{dummy_tag}.first(0));
+ }
+ }
+}
+
+FUZZ_TARGET(crypto_aeadchacha20poly1305)
+{
+ FuzzedDataProvider provider{buffer.data(), buffer.size()};
+
+ auto key = provider.ConsumeBytes<std::byte>(32);
+ key.resize(32);
+ AEADChaCha20Poly1305 aead(key);
+
+ // Initialize RNG deterministically, to generate contents and AAD. We assume that there are no
+ // (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid
+ // reading the actual data for those from the fuzzer input (which would need large amounts of
+ // data).
+ InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
+
+ LIMITED_WHILE(provider.ConsumeBool(), 100)
+ {
+ // Mode:
+ // - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix.
+ // - Bit 2: whether this ciphertext will be corrupted (making it the last sent one)
+ // - Bit 3-4: controls the maximum aad length (max 511 bytes)
+ // - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons)
+ unsigned mode = provider.ConsumeIntegral<uint8_t>();
+ bool use_splits = mode & 1;
+ bool damage = mode & 4;
+ unsigned aad_length_bits = 3 * ((mode >> 3) & 3);
+ unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1);
+ unsigned length_bits = 2 * ((mode >> 5) & 7);
+ unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1);
+ // Generate aad and content.
+ auto aad = rng.randbytes<std::byte>(aad_length);
+ auto plain = rng.randbytes<std::byte>(length);
+ std::vector<std::byte> cipher(length + AEADChaCha20Poly1305::EXPANSION);
+ // Generate nonce
+ AEADChaCha20Poly1305::Nonce96 nonce = {(uint32_t)rng(), rng()};
+
+ if (use_splits && length > 0) {
+ size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
+ aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, nonce, cipher);
+ } else {
+ aead.Encrypt(plain, aad, nonce, cipher);
+ }
+
+ // Test Keystream output
+ std::vector<std::byte> keystream(length);
+ aead.Keystream(nonce, keystream);
+ for (size_t i = 0; i < length; ++i) {
+ assert((plain[i] ^ keystream[i]) == cipher[i]);
+ }
+
+ std::vector<std::byte> decrypted_contents(length);
+ bool ok{false};
+
+ // damage the key
+ unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31);
+ std::byte damage_val{(uint8_t)(1U << (key_position & 7))};
+ std::vector<std::byte> bad_key = key;
+ bad_key[key_position] ^= damage_val;
+
+ AEADChaCha20Poly1305 bad_aead(bad_key);
+ ok = bad_aead.Decrypt(cipher, aad, nonce, decrypted_contents);
+ assert(!ok);
+
+ // Optionally damage 1 bit in either the cipher (corresponding to a change in transit)
+ // or the aad (to make sure that decryption will fail if the AAD mismatches).
+ if (damage) {
+ unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U);
+ unsigned damage_pos = damage_bit >> 3;
+ std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))};
+ if (damage_pos >= cipher.size()) {
+ aad[damage_pos - cipher.size()] ^= damage_val;
+ } else {
+ cipher[damage_pos] ^= damage_val;
+ }
+ }
+
+ if (use_splits && length > 0) {
+ size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
+ ok = aead.Decrypt(cipher, aad, nonce, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index));
+ } else {
+ ok = aead.Decrypt(cipher, aad, nonce, decrypted_contents);
+ }
+
+ // Decryption *must* fail if the packet was damaged, and succeed if it wasn't.
+ assert(!ok == damage);
+ if (!ok) break;
+ assert(decrypted_contents == plain);
+ }
+}
+
+FUZZ_TARGET(crypto_fschacha20poly1305)
+{
+ FuzzedDataProvider provider{buffer.data(), buffer.size()};
+
+ uint32_t rekey_interval = provider.ConsumeIntegralInRange<size_t>(32, 512);
+ auto key = provider.ConsumeBytes<std::byte>(32);
+ key.resize(32);
+ FSChaCha20Poly1305 enc_aead(key, rekey_interval);
+ FSChaCha20Poly1305 dec_aead(key, rekey_interval);
+
+ // Initialize RNG deterministically, to generate contents and AAD. We assume that there are no
+ // (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid
+ // reading the actual data for those from the fuzzer input (which would need large amounts of
+ // data).
+ InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
+
+ LIMITED_WHILE(provider.ConsumeBool(), 100)
+ {
+ // Mode:
+ // - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix.
+ // - Bit 2: whether this ciphertext will be corrupted (making it the last sent one)
+ // - Bit 3-4: controls the maximum aad length (max 511 bytes)
+ // - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons)
+ unsigned mode = provider.ConsumeIntegral<uint8_t>();
+ bool use_splits = mode & 1;
+ bool damage = mode & 4;
+ unsigned aad_length_bits = 3 * ((mode >> 3) & 3);
+ unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1);
+ unsigned length_bits = 2 * ((mode >> 5) & 7);
+ unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1);
+ // Generate aad and content.
+ auto aad = rng.randbytes<std::byte>(aad_length);
+ auto plain = rng.randbytes<std::byte>(length);
+ std::vector<std::byte> cipher(length + FSChaCha20Poly1305::EXPANSION);
+
+ crypt_till_rekey(enc_aead, rekey_interval, true);
+ if (use_splits && length > 0) {
+ size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
+ enc_aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, cipher);
+ } else {
+ enc_aead.Encrypt(plain, aad, cipher);
+ }
+
+ std::vector<std::byte> decrypted_contents(length);
+ bool ok{false};
+
+ // damage the key
+ unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31);
+ std::byte damage_val{(uint8_t)(1U << (key_position & 7))};
+ std::vector<std::byte> bad_key = key;
+ bad_key[key_position] ^= damage_val;
+
+ FSChaCha20Poly1305 bad_fs_aead(bad_key, rekey_interval);
+ crypt_till_rekey(bad_fs_aead, rekey_interval, false);
+ ok = bad_fs_aead.Decrypt(cipher, aad, decrypted_contents);
+ assert(!ok);
+
+ // Optionally damage 1 bit in either the cipher (corresponding to a change in transit)
+ // or the aad (to make sure that decryption will fail if the AAD mismatches).
+ if (damage) {
+ unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U);
+ unsigned damage_pos = damage_bit >> 3;
+ std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))};
+ if (damage_pos >= cipher.size()) {
+ aad[damage_pos - cipher.size()] ^= damage_val;
+ } else {
+ cipher[damage_pos] ^= damage_val;
+ }
+ }
+
+ crypt_till_rekey(dec_aead, rekey_interval, false);
+ if (use_splits && length > 0) {
+ size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
+ ok = dec_aead.Decrypt(cipher, aad, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index));
+ } else {
+ ok = dec_aead.Decrypt(cipher, aad, decrypted_contents);
+ }
+
+ // Decryption *must* fail if the packet was damaged, and succeed if it wasn't.
+ assert(!ok == damage);
+ if (!ok) break;
+ assert(decrypted_contents == plain);
+ }
+}