aboutsummaryrefslogtreecommitdiff
path: root/src/support/lockedpool.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/support/lockedpool.cpp')
-rw-r--r--src/support/lockedpool.cpp383
1 files changed, 383 insertions, 0 deletions
diff --git a/src/support/lockedpool.cpp b/src/support/lockedpool.cpp
new file mode 100644
index 0000000000..63050f006b
--- /dev/null
+++ b/src/support/lockedpool.cpp
@@ -0,0 +1,383 @@
+// Copyright (c) 2016 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#include "support/lockedpool.h"
+#include "support/cleanse.h"
+
+#if defined(HAVE_CONFIG_H)
+#include "config/bitcoin-config.h"
+#endif
+
+#ifdef WIN32
+#ifdef _WIN32_WINNT
+#undef _WIN32_WINNT
+#endif
+#define _WIN32_WINNT 0x0501
+#define WIN32_LEAN_AND_MEAN 1
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif
+#include <windows.h>
+#else
+#include <sys/mman.h> // for mmap
+#include <sys/resource.h> // for getrlimit
+#include <limits.h> // for PAGESIZE
+#include <unistd.h> // for sysconf
+#endif
+
+LockedPoolManager* LockedPoolManager::_instance = NULL;
+std::once_flag LockedPoolManager::init_flag;
+
+/*******************************************************************************/
+// Utilities
+//
+/** Align up to power of 2 */
+static inline size_t align_up(size_t x, size_t align)
+{
+ return (x + align - 1) & ~(align - 1);
+}
+
+/*******************************************************************************/
+// Implementation: Arena
+
+Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
+ base(static_cast<char*>(base_in)), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
+{
+ // Start with one free chunk that covers the entire arena
+ chunks.emplace(base, Chunk(size_in, false));
+}
+
+Arena::~Arena()
+{
+}
+
+void* Arena::alloc(size_t size)
+{
+ // Round to next multiple of alignment
+ size = align_up(size, alignment);
+
+ // Don't handle zero-sized chunks, or those bigger than MAX_SIZE
+ if (size == 0 || size >= Chunk::MAX_SIZE) {
+ return nullptr;
+ }
+
+ for (auto& chunk: chunks) {
+ if (!chunk.second.isInUse() && size <= chunk.second.getSize()) {
+ char* base = chunk.first;
+ size_t leftover = chunk.second.getSize() - size;
+ if (leftover > 0) { // Split chunk
+ chunks.emplace(base + size, Chunk(leftover, false));
+ chunk.second.setSize(size);
+ }
+ chunk.second.setInUse(true);
+ return reinterpret_cast<void*>(base);
+ }
+ }
+ return nullptr;
+}
+
+void Arena::free(void *ptr)
+{
+ // Freeing the NULL pointer is OK.
+ if (ptr == nullptr) {
+ return;
+ }
+ auto i = chunks.find(static_cast<char*>(ptr));
+ if (i == chunks.end() || !i->second.isInUse()) {
+ throw std::runtime_error("Arena: invalid or double free");
+ }
+
+ i->second.setInUse(false);
+
+ if (i != chunks.begin()) { // Absorb into previous chunk if exists and free
+ auto prev = i;
+ --prev;
+ if (!prev->second.isInUse()) {
+ // Absorb current chunk size into previous chunk.
+ prev->second.setSize(prev->second.getSize() + i->second.getSize());
+ // Erase current chunk. Erasing does not invalidate current
+ // iterators for a map, except for that pointing to the object
+ // itself, which will be overwritten in the next statement.
+ chunks.erase(i);
+ // From here on, the previous chunk is our current chunk.
+ i = prev;
+ }
+ }
+ auto next = i;
+ ++next;
+ if (next != chunks.end()) { // Absorb next chunk if exists and free
+ if (!next->second.isInUse()) {
+ // Absurb next chunk size into current chunk
+ i->second.setSize(i->second.getSize() + next->second.getSize());
+ // Erase next chunk.
+ chunks.erase(next);
+ }
+ }
+}
+
+Arena::Stats Arena::stats() const
+{
+ Arena::Stats r;
+ r.used = r.free = r.total = r.chunks_used = r.chunks_free = 0;
+ for (const auto& chunk: chunks) {
+ if (chunk.second.isInUse()) {
+ r.used += chunk.second.getSize();
+ r.chunks_used += 1;
+ } else {
+ r.free += chunk.second.getSize();
+ r.chunks_free += 1;
+ }
+ r.total += chunk.second.getSize();
+ }
+ return r;
+}
+
+#ifdef ARENA_DEBUG
+void Arena::walk() const
+{
+ for (const auto& chunk: chunks) {
+ std::cout <<
+ "0x" << std::hex << std::setw(16) << std::setfill('0') << chunk.first <<
+ " 0x" << std::hex << std::setw(16) << std::setfill('0') << chunk.second.getSize() <<
+ " 0x" << chunk.second.isInUse() << std::endl;
+ }
+ std::cout << std::endl;
+}
+#endif
+
+/*******************************************************************************/
+// Implementation: Win32LockedPageAllocator
+
+#ifdef WIN32
+/** LockedPageAllocator specialized for Windows.
+ */
+class Win32LockedPageAllocator: public LockedPageAllocator
+{
+public:
+ Win32LockedPageAllocator();
+ void* AllocateLocked(size_t len, bool *lockingSuccess);
+ void FreeLocked(void* addr, size_t len);
+ size_t GetLimit();
+private:
+ size_t page_size;
+};
+
+Win32LockedPageAllocator::Win32LockedPageAllocator()
+{
+ // Determine system page size in bytes
+ SYSTEM_INFO sSysInfo;
+ GetSystemInfo(&sSysInfo);
+ page_size = sSysInfo.dwPageSize;
+}
+void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
+{
+ len = align_up(len, page_size);
+ void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
+ if (addr) {
+ // VirtualLock is used to attempt to keep keying material out of swap. Note
+ // that it does not provide this as a guarantee, but, in practice, memory
+ // that has been VirtualLock'd almost never gets written to the pagefile
+ // except in rare circumstances where memory is extremely low.
+ *lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
+ }
+ return addr;
+}
+void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
+{
+ len = align_up(len, page_size);
+ memory_cleanse(addr, len);
+ VirtualUnlock(const_cast<void*>(addr), len);
+}
+
+size_t Win32LockedPageAllocator::GetLimit()
+{
+ // TODO is there a limit on windows, how to get it?
+ return std::numeric_limits<size_t>::max();
+}
+#endif
+
+/*******************************************************************************/
+// Implementation: PosixLockedPageAllocator
+
+#ifndef WIN32
+/** LockedPageAllocator specialized for OSes that don't try to be
+ * special snowflakes.
+ */
+class PosixLockedPageAllocator: public LockedPageAllocator
+{
+public:
+ PosixLockedPageAllocator();
+ void* AllocateLocked(size_t len, bool *lockingSuccess);
+ void FreeLocked(void* addr, size_t len);
+ size_t GetLimit();
+private:
+ size_t page_size;
+};
+
+PosixLockedPageAllocator::PosixLockedPageAllocator()
+{
+ // Determine system page size in bytes
+#if defined(PAGESIZE) // defined in limits.h
+ page_size = PAGESIZE;
+#else // assume some POSIX OS
+ page_size = sysconf(_SC_PAGESIZE);
+#endif
+}
+void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
+{
+ void *addr;
+ len = align_up(len, page_size);
+ addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
+ if (addr) {
+ *lockingSuccess = mlock(addr, len) == 0;
+ }
+ return addr;
+}
+void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
+{
+ len = align_up(len, page_size);
+ memory_cleanse(addr, len);
+ munlock(addr, len);
+ munmap(addr, len);
+}
+size_t PosixLockedPageAllocator::GetLimit()
+{
+#ifdef RLIMIT_MEMLOCK
+ struct rlimit rlim;
+ if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
+ if (rlim.rlim_cur != RLIM_INFINITY) {
+ return rlim.rlim_cur;
+ }
+ }
+#endif
+ return std::numeric_limits<size_t>::max();
+}
+#endif
+
+/*******************************************************************************/
+// Implementation: LockedPool
+
+LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in):
+ allocator(std::move(allocator_in)), lf_cb(lf_cb_in), cumulative_bytes_locked(0)
+{
+}
+
+LockedPool::~LockedPool()
+{
+}
+void* LockedPool::alloc(size_t size)
+{
+ std::lock_guard<std::mutex> lock(mutex);
+ // Try allocating from each current arena
+ for (auto &arena: arenas) {
+ void *addr = arena.alloc(size);
+ if (addr) {
+ return addr;
+ }
+ }
+ // If that fails, create a new one
+ if (new_arena(ARENA_SIZE, ARENA_ALIGN)) {
+ return arenas.back().alloc(size);
+ }
+ return nullptr;
+}
+
+void LockedPool::free(void *ptr)
+{
+ std::lock_guard<std::mutex> lock(mutex);
+ // TODO we can do better than this linear search by keeping a map of arena
+ // extents to arena, and looking up the address.
+ for (auto &arena: arenas) {
+ if (arena.addressInArena(ptr)) {
+ arena.free(ptr);
+ return;
+ }
+ }
+ throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
+}
+
+LockedPool::Stats LockedPool::stats() const
+{
+ std::lock_guard<std::mutex> lock(mutex);
+ LockedPool::Stats r;
+ r.used = r.free = r.total = r.chunks_used = r.chunks_free = 0;
+ r.locked = cumulative_bytes_locked;
+ for (const auto &arena: arenas) {
+ Arena::Stats i = arena.stats();
+ r.used += i.used;
+ r.free += i.free;
+ r.total += i.total;
+ r.chunks_used += i.chunks_used;
+ r.chunks_free += i.chunks_free;
+ }
+ return r;
+}
+
+bool LockedPool::new_arena(size_t size, size_t align)
+{
+ bool locked;
+ // If this is the first arena, handle this specially: Cap the upper size
+ // by the process limit. This makes sure that the first arena will at least
+ // be locked. An exception to this is if the process limit is 0:
+ // in this case no memory can be locked at all so we'll skip past this logic.
+ if (arenas.empty()) {
+ size_t limit = allocator->GetLimit();
+ if (limit > 0) {
+ size = std::min(size, limit);
+ }
+ }
+ void *addr = allocator->AllocateLocked(size, &locked);
+ if (!addr) {
+ return false;
+ }
+ if (locked) {
+ cumulative_bytes_locked += size;
+ } else if (lf_cb) { // Call the locking-failed callback if locking failed
+ if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
+ allocator->FreeLocked(addr, size);
+ return false;
+ }
+ }
+ arenas.emplace_back(allocator.get(), addr, size, align);
+ return true;
+}
+
+LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
+ Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
+{
+}
+LockedPool::LockedPageArena::~LockedPageArena()
+{
+ allocator->FreeLocked(base, size);
+}
+
+/*******************************************************************************/
+// Implementation: LockedPoolManager
+//
+LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator):
+ LockedPool(std::move(allocator), &LockedPoolManager::LockingFailed)
+{
+}
+
+bool LockedPoolManager::LockingFailed()
+{
+ // TODO: log something but how? without including util.h
+ return true;
+}
+
+void LockedPoolManager::CreateInstance()
+{
+ // Using a local static instance guarantees that the object is initialized
+ // when it's first needed and also deinitialized after all objects that use
+ // it are done with it. I can think of one unlikely scenario where we may
+ // have a static deinitialization order/problem, but the check in
+ // LockedPoolManagerBase's destructor helps us detect if that ever happens.
+#ifdef WIN32
+ std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
+#else
+ std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
+#endif
+ static LockedPoolManager instance(std::move(allocator));
+ LockedPoolManager::_instance = &instance;
+}