diff options
Diffstat (limited to 'src/span.h')
-rw-r--r-- | src/span.h | 251 |
1 files changed, 251 insertions, 0 deletions
diff --git a/src/span.h b/src/span.h new file mode 100644 index 0000000000..830164514b --- /dev/null +++ b/src/span.h @@ -0,0 +1,251 @@ +// Copyright (c) 2018-2020 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef BITCOIN_SPAN_H +#define BITCOIN_SPAN_H + +#include <type_traits> +#include <cstddef> +#include <algorithm> +#include <assert.h> + +#ifdef DEBUG +#define CONSTEXPR_IF_NOT_DEBUG +#define ASSERT_IF_DEBUG(x) assert((x)) +#else +#define CONSTEXPR_IF_NOT_DEBUG constexpr +#define ASSERT_IF_DEBUG(x) +#endif + +#if defined(__clang__) +#if __has_attribute(lifetimebound) +#define SPAN_ATTR_LIFETIMEBOUND [[clang::lifetimebound]] +#else +#define SPAN_ATTR_LIFETIMEBOUND +#endif +#else +#define SPAN_ATTR_LIFETIMEBOUND +#endif + +/** A Span is an object that can refer to a contiguous sequence of objects. + * + * It implements a subset of C++20's std::span. + * + * Things to be aware of when writing code that deals with Spans: + * + * - Similar to references themselves, Spans are subject to reference lifetime + * issues. The user is responsible for making sure the objects pointed to by + * a Span live as long as the Span is used. For example: + * + * std::vector<int> vec{1,2,3,4}; + * Span<int> sp(vec); + * vec.push_back(5); + * printf("%i\n", sp.front()); // UB! + * + * may exhibit undefined behavior, as increasing the size of a vector may + * invalidate references. + * + * - One particular pitfall is that Spans can be constructed from temporaries, + * but this is unsafe when the Span is stored in a variable, outliving the + * temporary. For example, this will compile, but exhibits undefined behavior: + * + * Span<const int> sp(std::vector<int>{1, 2, 3}); + * printf("%i\n", sp.front()); // UB! + * + * The lifetime of the vector ends when the statement it is created in ends. + * Thus the Span is left with a dangling reference, and using it is undefined. + * + * - Due to Span's automatic creation from range-like objects (arrays, and data + * types that expose a data() and size() member function), functions that + * accept a Span as input parameter can be called with any compatible + * range-like object. For example, this works: +* + * void Foo(Span<const int> arg); + * + * Foo(std::vector<int>{1, 2, 3}); // Works + * + * This is very useful in cases where a function truly does not care about the + * container, and only about having exactly a range of elements. However it + * may also be surprising to see automatic conversions in this case. + * + * When a function accepts a Span with a mutable element type, it will not + * accept temporaries; only variables or other references. For example: + * + * void FooMut(Span<int> arg); + * + * FooMut(std::vector<int>{1, 2, 3}); // Does not compile + * std::vector<int> baz{1, 2, 3}; + * FooMut(baz); // Works + * + * This is similar to how functions that take (non-const) lvalue references + * as input cannot accept temporaries. This does not work either: + * + * void FooVec(std::vector<int>& arg); + * FooVec(std::vector<int>{1, 2, 3}); // Does not compile + * + * The idea is that if a function accepts a mutable reference, a meaningful + * result will be present in that variable after the call. Passing a temporary + * is useless in that context. + */ +template<typename C> +class Span +{ + C* m_data; + std::size_t m_size; + + template <class T> + struct is_Span_int : public std::false_type {}; + template <class T> + struct is_Span_int<Span<T>> : public std::true_type {}; + template <class T> + struct is_Span : public is_Span_int<typename std::remove_cv<T>::type>{}; + + +public: + constexpr Span() noexcept : m_data(nullptr), m_size(0) {} + + /** Construct a span from a begin pointer and a size. + * + * This implements a subset of the iterator-based std::span constructor in C++20, + * which is hard to implement without std::address_of. + */ + template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0> + constexpr Span(T* begin, std::size_t size) noexcept : m_data(begin), m_size(size) {} + + /** Construct a span from a begin and end pointer. + * + * This implements a subset of the iterator-based std::span constructor in C++20, + * which is hard to implement without std::address_of. + */ + template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0> + CONSTEXPR_IF_NOT_DEBUG Span(T* begin, T* end) noexcept : m_data(begin), m_size(end - begin) + { + ASSERT_IF_DEBUG(end >= begin); + } + + /** Implicit conversion of spans between compatible types. + * + * Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type + * C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding + * C++20 std::span constructor. + * + * For example this means that a Span<T> can be converted into a Span<const T>. + */ + template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0> + constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {} + + /** Default copy constructor. */ + constexpr Span(const Span&) noexcept = default; + + /** Default assignment operator. */ + Span& operator=(const Span& other) noexcept = default; + + /** Construct a Span from an array. This matches the corresponding C++20 std::span constructor. */ + template <int N> + constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {} + + /** Construct a Span for objects with .data() and .size() (std::string, std::array, std::vector, ...). + * + * This implements a subset of the functionality provided by the C++20 std::span range-based constructor. + * + * To prevent surprises, only Spans for constant value types are supported when passing in temporaries. + * Note that this restriction does not exist when converting arrays or other Spans (see above). + */ + template <typename V> + constexpr Span(V& other SPAN_ATTR_LIFETIMEBOUND, + typename std::enable_if<!is_Span<V>::value && + std::is_convertible<typename std::remove_pointer<decltype(std::declval<V&>().data())>::type (*)[], C (*)[]>::value && + std::is_convertible<decltype(std::declval<V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr) + : m_data(other.data()), m_size(other.size()){} + + template <typename V> + constexpr Span(const V& other SPAN_ATTR_LIFETIMEBOUND, + typename std::enable_if<!is_Span<V>::value && + std::is_convertible<typename std::remove_pointer<decltype(std::declval<const V&>().data())>::type (*)[], C (*)[]>::value && + std::is_convertible<decltype(std::declval<const V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr) + : m_data(other.data()), m_size(other.size()){} + + constexpr C* data() const noexcept { return m_data; } + constexpr C* begin() const noexcept { return m_data; } + constexpr C* end() const noexcept { return m_data + m_size; } + CONSTEXPR_IF_NOT_DEBUG C& front() const noexcept + { + ASSERT_IF_DEBUG(size() > 0); + return m_data[0]; + } + CONSTEXPR_IF_NOT_DEBUG C& back() const noexcept + { + ASSERT_IF_DEBUG(size() > 0); + return m_data[m_size - 1]; + } + constexpr std::size_t size() const noexcept { return m_size; } + constexpr bool empty() const noexcept { return size() == 0; } + CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept + { + ASSERT_IF_DEBUG(size() > pos); + return m_data[pos]; + } + CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset) const noexcept + { + ASSERT_IF_DEBUG(size() >= offset); + return Span<C>(m_data + offset, m_size - offset); + } + CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset, std::size_t count) const noexcept + { + ASSERT_IF_DEBUG(size() >= offset + count); + return Span<C>(m_data + offset, count); + } + CONSTEXPR_IF_NOT_DEBUG Span<C> first(std::size_t count) const noexcept + { + ASSERT_IF_DEBUG(size() >= count); + return Span<C>(m_data, count); + } + CONSTEXPR_IF_NOT_DEBUG Span<C> last(std::size_t count) const noexcept + { + ASSERT_IF_DEBUG(size() >= count); + return Span<C>(m_data + m_size - count, count); + } + + friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); } + friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); } + friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); } + friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); } + friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); } + friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); } + + template <typename O> friend class Span; +}; + +// MakeSpan helps constructing a Span of the right type automatically. +/** MakeSpan for arrays: */ +template <typename A, int N> Span<A> constexpr MakeSpan(A (&a)[N]) { return Span<A>(a, N); } +/** MakeSpan for temporaries / rvalue references, only supporting const output. */ +template <typename V> constexpr auto MakeSpan(V&& v SPAN_ATTR_LIFETIMEBOUND) -> typename std::enable_if<!std::is_lvalue_reference<V>::value, Span<const typename std::remove_pointer<decltype(v.data())>::type>>::type { return std::forward<V>(v); } +/** MakeSpan for (lvalue) references, supporting mutable output. */ +template <typename V> constexpr auto MakeSpan(V& v SPAN_ATTR_LIFETIMEBOUND) -> Span<typename std::remove_pointer<decltype(v.data())>::type> { return v; } + +/** Pop the last element off a span, and return a reference to that element. */ +template <typename T> +T& SpanPopBack(Span<T>& span) +{ + size_t size = span.size(); + ASSERT_IF_DEBUG(size > 0); + T& back = span[size - 1]; + span = Span<T>(span.data(), size - 1); + return back; +} + +// Helper functions to safely cast to unsigned char pointers. +inline unsigned char* UCharCast(char* c) { return (unsigned char*)c; } +inline unsigned char* UCharCast(unsigned char* c) { return c; } +inline const unsigned char* UCharCast(const char* c) { return (unsigned char*)c; } +inline const unsigned char* UCharCast(const unsigned char* c) { return c; } + +// Helper function to safely convert a Span to a Span<[const] unsigned char>. +template <typename T> constexpr auto UCharSpanCast(Span<T> s) -> Span<typename std::remove_pointer<decltype(UCharCast(s.data()))>::type> { return {UCharCast(s.data()), s.size()}; } + +/** Like MakeSpan, but for (const) unsigned char member types only. Only works for (un)signed char containers. */ +template <typename V> constexpr auto MakeUCharSpan(V&& v) -> decltype(UCharSpanCast(MakeSpan(std::forward<V>(v)))) { return UCharSpanCast(MakeSpan(std::forward<V>(v))); } + +#endif |