aboutsummaryrefslogtreecommitdiff
path: root/src/span.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/span.h')
-rw-r--r--src/span.h251
1 files changed, 251 insertions, 0 deletions
diff --git a/src/span.h b/src/span.h
new file mode 100644
index 0000000000..830164514b
--- /dev/null
+++ b/src/span.h
@@ -0,0 +1,251 @@
+// Copyright (c) 2018-2020 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#ifndef BITCOIN_SPAN_H
+#define BITCOIN_SPAN_H
+
+#include <type_traits>
+#include <cstddef>
+#include <algorithm>
+#include <assert.h>
+
+#ifdef DEBUG
+#define CONSTEXPR_IF_NOT_DEBUG
+#define ASSERT_IF_DEBUG(x) assert((x))
+#else
+#define CONSTEXPR_IF_NOT_DEBUG constexpr
+#define ASSERT_IF_DEBUG(x)
+#endif
+
+#if defined(__clang__)
+#if __has_attribute(lifetimebound)
+#define SPAN_ATTR_LIFETIMEBOUND [[clang::lifetimebound]]
+#else
+#define SPAN_ATTR_LIFETIMEBOUND
+#endif
+#else
+#define SPAN_ATTR_LIFETIMEBOUND
+#endif
+
+/** A Span is an object that can refer to a contiguous sequence of objects.
+ *
+ * It implements a subset of C++20's std::span.
+ *
+ * Things to be aware of when writing code that deals with Spans:
+ *
+ * - Similar to references themselves, Spans are subject to reference lifetime
+ * issues. The user is responsible for making sure the objects pointed to by
+ * a Span live as long as the Span is used. For example:
+ *
+ * std::vector<int> vec{1,2,3,4};
+ * Span<int> sp(vec);
+ * vec.push_back(5);
+ * printf("%i\n", sp.front()); // UB!
+ *
+ * may exhibit undefined behavior, as increasing the size of a vector may
+ * invalidate references.
+ *
+ * - One particular pitfall is that Spans can be constructed from temporaries,
+ * but this is unsafe when the Span is stored in a variable, outliving the
+ * temporary. For example, this will compile, but exhibits undefined behavior:
+ *
+ * Span<const int> sp(std::vector<int>{1, 2, 3});
+ * printf("%i\n", sp.front()); // UB!
+ *
+ * The lifetime of the vector ends when the statement it is created in ends.
+ * Thus the Span is left with a dangling reference, and using it is undefined.
+ *
+ * - Due to Span's automatic creation from range-like objects (arrays, and data
+ * types that expose a data() and size() member function), functions that
+ * accept a Span as input parameter can be called with any compatible
+ * range-like object. For example, this works:
+*
+ * void Foo(Span<const int> arg);
+ *
+ * Foo(std::vector<int>{1, 2, 3}); // Works
+ *
+ * This is very useful in cases where a function truly does not care about the
+ * container, and only about having exactly a range of elements. However it
+ * may also be surprising to see automatic conversions in this case.
+ *
+ * When a function accepts a Span with a mutable element type, it will not
+ * accept temporaries; only variables or other references. For example:
+ *
+ * void FooMut(Span<int> arg);
+ *
+ * FooMut(std::vector<int>{1, 2, 3}); // Does not compile
+ * std::vector<int> baz{1, 2, 3};
+ * FooMut(baz); // Works
+ *
+ * This is similar to how functions that take (non-const) lvalue references
+ * as input cannot accept temporaries. This does not work either:
+ *
+ * void FooVec(std::vector<int>& arg);
+ * FooVec(std::vector<int>{1, 2, 3}); // Does not compile
+ *
+ * The idea is that if a function accepts a mutable reference, a meaningful
+ * result will be present in that variable after the call. Passing a temporary
+ * is useless in that context.
+ */
+template<typename C>
+class Span
+{
+ C* m_data;
+ std::size_t m_size;
+
+ template <class T>
+ struct is_Span_int : public std::false_type {};
+ template <class T>
+ struct is_Span_int<Span<T>> : public std::true_type {};
+ template <class T>
+ struct is_Span : public is_Span_int<typename std::remove_cv<T>::type>{};
+
+
+public:
+ constexpr Span() noexcept : m_data(nullptr), m_size(0) {}
+
+ /** Construct a span from a begin pointer and a size.
+ *
+ * This implements a subset of the iterator-based std::span constructor in C++20,
+ * which is hard to implement without std::address_of.
+ */
+ template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
+ constexpr Span(T* begin, std::size_t size) noexcept : m_data(begin), m_size(size) {}
+
+ /** Construct a span from a begin and end pointer.
+ *
+ * This implements a subset of the iterator-based std::span constructor in C++20,
+ * which is hard to implement without std::address_of.
+ */
+ template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
+ CONSTEXPR_IF_NOT_DEBUG Span(T* begin, T* end) noexcept : m_data(begin), m_size(end - begin)
+ {
+ ASSERT_IF_DEBUG(end >= begin);
+ }
+
+ /** Implicit conversion of spans between compatible types.
+ *
+ * Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type
+ * C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding
+ * C++20 std::span constructor.
+ *
+ * For example this means that a Span<T> can be converted into a Span<const T>.
+ */
+ template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0>
+ constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {}
+
+ /** Default copy constructor. */
+ constexpr Span(const Span&) noexcept = default;
+
+ /** Default assignment operator. */
+ Span& operator=(const Span& other) noexcept = default;
+
+ /** Construct a Span from an array. This matches the corresponding C++20 std::span constructor. */
+ template <int N>
+ constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {}
+
+ /** Construct a Span for objects with .data() and .size() (std::string, std::array, std::vector, ...).
+ *
+ * This implements a subset of the functionality provided by the C++20 std::span range-based constructor.
+ *
+ * To prevent surprises, only Spans for constant value types are supported when passing in temporaries.
+ * Note that this restriction does not exist when converting arrays or other Spans (see above).
+ */
+ template <typename V>
+ constexpr Span(V& other SPAN_ATTR_LIFETIMEBOUND,
+ typename std::enable_if<!is_Span<V>::value &&
+ std::is_convertible<typename std::remove_pointer<decltype(std::declval<V&>().data())>::type (*)[], C (*)[]>::value &&
+ std::is_convertible<decltype(std::declval<V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr)
+ : m_data(other.data()), m_size(other.size()){}
+
+ template <typename V>
+ constexpr Span(const V& other SPAN_ATTR_LIFETIMEBOUND,
+ typename std::enable_if<!is_Span<V>::value &&
+ std::is_convertible<typename std::remove_pointer<decltype(std::declval<const V&>().data())>::type (*)[], C (*)[]>::value &&
+ std::is_convertible<decltype(std::declval<const V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr)
+ : m_data(other.data()), m_size(other.size()){}
+
+ constexpr C* data() const noexcept { return m_data; }
+ constexpr C* begin() const noexcept { return m_data; }
+ constexpr C* end() const noexcept { return m_data + m_size; }
+ CONSTEXPR_IF_NOT_DEBUG C& front() const noexcept
+ {
+ ASSERT_IF_DEBUG(size() > 0);
+ return m_data[0];
+ }
+ CONSTEXPR_IF_NOT_DEBUG C& back() const noexcept
+ {
+ ASSERT_IF_DEBUG(size() > 0);
+ return m_data[m_size - 1];
+ }
+ constexpr std::size_t size() const noexcept { return m_size; }
+ constexpr bool empty() const noexcept { return size() == 0; }
+ CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept
+ {
+ ASSERT_IF_DEBUG(size() > pos);
+ return m_data[pos];
+ }
+ CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset) const noexcept
+ {
+ ASSERT_IF_DEBUG(size() >= offset);
+ return Span<C>(m_data + offset, m_size - offset);
+ }
+ CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset, std::size_t count) const noexcept
+ {
+ ASSERT_IF_DEBUG(size() >= offset + count);
+ return Span<C>(m_data + offset, count);
+ }
+ CONSTEXPR_IF_NOT_DEBUG Span<C> first(std::size_t count) const noexcept
+ {
+ ASSERT_IF_DEBUG(size() >= count);
+ return Span<C>(m_data, count);
+ }
+ CONSTEXPR_IF_NOT_DEBUG Span<C> last(std::size_t count) const noexcept
+ {
+ ASSERT_IF_DEBUG(size() >= count);
+ return Span<C>(m_data + m_size - count, count);
+ }
+
+ friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); }
+ friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); }
+ friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); }
+ friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); }
+ friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); }
+ friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); }
+
+ template <typename O> friend class Span;
+};
+
+// MakeSpan helps constructing a Span of the right type automatically.
+/** MakeSpan for arrays: */
+template <typename A, int N> Span<A> constexpr MakeSpan(A (&a)[N]) { return Span<A>(a, N); }
+/** MakeSpan for temporaries / rvalue references, only supporting const output. */
+template <typename V> constexpr auto MakeSpan(V&& v SPAN_ATTR_LIFETIMEBOUND) -> typename std::enable_if<!std::is_lvalue_reference<V>::value, Span<const typename std::remove_pointer<decltype(v.data())>::type>>::type { return std::forward<V>(v); }
+/** MakeSpan for (lvalue) references, supporting mutable output. */
+template <typename V> constexpr auto MakeSpan(V& v SPAN_ATTR_LIFETIMEBOUND) -> Span<typename std::remove_pointer<decltype(v.data())>::type> { return v; }
+
+/** Pop the last element off a span, and return a reference to that element. */
+template <typename T>
+T& SpanPopBack(Span<T>& span)
+{
+ size_t size = span.size();
+ ASSERT_IF_DEBUG(size > 0);
+ T& back = span[size - 1];
+ span = Span<T>(span.data(), size - 1);
+ return back;
+}
+
+// Helper functions to safely cast to unsigned char pointers.
+inline unsigned char* UCharCast(char* c) { return (unsigned char*)c; }
+inline unsigned char* UCharCast(unsigned char* c) { return c; }
+inline const unsigned char* UCharCast(const char* c) { return (unsigned char*)c; }
+inline const unsigned char* UCharCast(const unsigned char* c) { return c; }
+
+// Helper function to safely convert a Span to a Span<[const] unsigned char>.
+template <typename T> constexpr auto UCharSpanCast(Span<T> s) -> Span<typename std::remove_pointer<decltype(UCharCast(s.data()))>::type> { return {UCharCast(s.data()), s.size()}; }
+
+/** Like MakeSpan, but for (const) unsigned char member types only. Only works for (un)signed char containers. */
+template <typename V> constexpr auto MakeUCharSpan(V&& v) -> decltype(UCharSpanCast(MakeSpan(std::forward<V>(v)))) { return UCharSpanCast(MakeSpan(std::forward<V>(v))); }
+
+#endif