aboutsummaryrefslogtreecommitdiff
path: root/src/span.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/span.h')
-rw-r--r--src/span.h69
1 files changed, 69 insertions, 0 deletions
diff --git a/src/span.h b/src/span.h
index d5d7ebccc4..830164514b 100644
--- a/src/span.h
+++ b/src/span.h
@@ -31,6 +31,62 @@
/** A Span is an object that can refer to a contiguous sequence of objects.
*
* It implements a subset of C++20's std::span.
+ *
+ * Things to be aware of when writing code that deals with Spans:
+ *
+ * - Similar to references themselves, Spans are subject to reference lifetime
+ * issues. The user is responsible for making sure the objects pointed to by
+ * a Span live as long as the Span is used. For example:
+ *
+ * std::vector<int> vec{1,2,3,4};
+ * Span<int> sp(vec);
+ * vec.push_back(5);
+ * printf("%i\n", sp.front()); // UB!
+ *
+ * may exhibit undefined behavior, as increasing the size of a vector may
+ * invalidate references.
+ *
+ * - One particular pitfall is that Spans can be constructed from temporaries,
+ * but this is unsafe when the Span is stored in a variable, outliving the
+ * temporary. For example, this will compile, but exhibits undefined behavior:
+ *
+ * Span<const int> sp(std::vector<int>{1, 2, 3});
+ * printf("%i\n", sp.front()); // UB!
+ *
+ * The lifetime of the vector ends when the statement it is created in ends.
+ * Thus the Span is left with a dangling reference, and using it is undefined.
+ *
+ * - Due to Span's automatic creation from range-like objects (arrays, and data
+ * types that expose a data() and size() member function), functions that
+ * accept a Span as input parameter can be called with any compatible
+ * range-like object. For example, this works:
+*
+ * void Foo(Span<const int> arg);
+ *
+ * Foo(std::vector<int>{1, 2, 3}); // Works
+ *
+ * This is very useful in cases where a function truly does not care about the
+ * container, and only about having exactly a range of elements. However it
+ * may also be surprising to see automatic conversions in this case.
+ *
+ * When a function accepts a Span with a mutable element type, it will not
+ * accept temporaries; only variables or other references. For example:
+ *
+ * void FooMut(Span<int> arg);
+ *
+ * FooMut(std::vector<int>{1, 2, 3}); // Does not compile
+ * std::vector<int> baz{1, 2, 3};
+ * FooMut(baz); // Works
+ *
+ * This is similar to how functions that take (non-const) lvalue references
+ * as input cannot accept temporaries. This does not work either:
+ *
+ * void FooVec(std::vector<int>& arg);
+ * FooVec(std::vector<int>{1, 2, 3}); // Does not compile
+ *
+ * The idea is that if a function accepts a mutable reference, a meaningful
+ * result will be present in that variable after the call. Passing a temporary
+ * is useless in that context.
*/
template<typename C>
class Span
@@ -124,6 +180,7 @@ public:
return m_data[m_size - 1];
}
constexpr std::size_t size() const noexcept { return m_size; }
+ constexpr bool empty() const noexcept { return size() == 0; }
CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept
{
ASSERT_IF_DEBUG(size() > pos);
@@ -179,4 +236,16 @@ T& SpanPopBack(Span<T>& span)
return back;
}
+// Helper functions to safely cast to unsigned char pointers.
+inline unsigned char* UCharCast(char* c) { return (unsigned char*)c; }
+inline unsigned char* UCharCast(unsigned char* c) { return c; }
+inline const unsigned char* UCharCast(const char* c) { return (unsigned char*)c; }
+inline const unsigned char* UCharCast(const unsigned char* c) { return c; }
+
+// Helper function to safely convert a Span to a Span<[const] unsigned char>.
+template <typename T> constexpr auto UCharSpanCast(Span<T> s) -> Span<typename std::remove_pointer<decltype(UCharCast(s.data()))>::type> { return {UCharCast(s.data()), s.size()}; }
+
+/** Like MakeSpan, but for (const) unsigned char member types only. Only works for (un)signed char containers. */
+template <typename V> constexpr auto MakeUCharSpan(V&& v) -> decltype(UCharSpanCast(MakeSpan(std::forward<V>(v)))) { return UCharSpanCast(MakeSpan(std::forward<V>(v))); }
+
#endif