aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/src/scalar_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/secp256k1/src/scalar_impl.h')
-rw-r--r--src/secp256k1/src/scalar_impl.h279
1 files changed, 116 insertions, 163 deletions
diff --git a/src/secp256k1/src/scalar_impl.h b/src/secp256k1/src/scalar_impl.h
index 4408cce2d8..3acbe264ae 100644
--- a/src/secp256k1/src/scalar_impl.h
+++ b/src/secp256k1/src/scalar_impl.h
@@ -24,121 +24,6 @@
#error "Please select scalar implementation"
#endif
-typedef struct {
-#ifndef USE_NUM_NONE
- secp256k1_num_t order;
-#endif
-#ifdef USE_ENDOMORPHISM
- secp256k1_scalar_t minus_lambda, minus_b1, minus_b2, g1, g2;
-#endif
-} secp256k1_scalar_consts_t;
-
-static const secp256k1_scalar_consts_t *secp256k1_scalar_consts = NULL;
-
-static void secp256k1_scalar_start(void) {
- if (secp256k1_scalar_consts != NULL)
- return;
-
- /* Allocate. */
- secp256k1_scalar_consts_t *ret = (secp256k1_scalar_consts_t*)checked_malloc(sizeof(secp256k1_scalar_consts_t));
-
-#ifndef USE_NUM_NONE
- static const unsigned char secp256k1_scalar_consts_order[] = {
- 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
- 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
- 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
- 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
- };
- secp256k1_num_set_bin(&ret->order, secp256k1_scalar_consts_order, sizeof(secp256k1_scalar_consts_order));
-#endif
-#ifdef USE_ENDOMORPHISM
- /**
- * Lambda is a scalar which has the property for secp256k1 that point multiplication by
- * it is efficiently computable (see secp256k1_gej_mul_lambda). */
- static const unsigned char secp256k1_scalar_consts_lambda[32] = {
- 0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,
- 0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
- 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,
- 0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72
- };
- /**
- * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
- * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
- * and k2 have a small size.
- * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
- *
- * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
- * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
- * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
- * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
- *
- * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
- * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
- * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
- *
- * g1, g2 are precomputed constants used to replace division with a rounded multiplication
- * when decomposing the scalar for an endomorphism-based point multiplication.
- *
- * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
- * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
- *
- * The derivation is described in the paper "Efficient Software Implementation of Public-Key
- * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
- * Section 4.3 (here we use a somewhat higher-precision estimate):
- * d = a1*b2 - b1*a2
- * g1 = round((2^272)*b2/d)
- * g2 = round((2^272)*b1/d)
- *
- * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
- * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
- */
- static const unsigned char secp256k1_scalar_consts_minus_b1[32] = {
- 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
- 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
- 0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,
- 0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3
- };
- static const unsigned char secp256k1_scalar_consts_b2[32] = {
- 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
- 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
- 0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,
- 0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15
- };
- static const unsigned char secp256k1_scalar_consts_g1[32] = {
- 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
- 0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x86,
- 0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,
- 0x90,0xe4,0x92,0x84,0xeb,0x15,0x3d,0xab
- };
- static const unsigned char secp256k1_scalar_consts_g2[32] = {
- 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
- 0x00,0x00,0x00,0x00,0x00,0x00,0xe4,0x43,
- 0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,
- 0x7f,0xa9,0x0a,0xbf,0xe4,0xc4,0x22,0x12
- };
-
- secp256k1_scalar_set_b32(&ret->minus_lambda, secp256k1_scalar_consts_lambda, NULL);
- secp256k1_scalar_negate(&ret->minus_lambda, &ret->minus_lambda);
- secp256k1_scalar_set_b32(&ret->minus_b1, secp256k1_scalar_consts_minus_b1, NULL);
- secp256k1_scalar_set_b32(&ret->minus_b2, secp256k1_scalar_consts_b2, NULL);
- secp256k1_scalar_negate(&ret->minus_b2, &ret->minus_b2);
- secp256k1_scalar_set_b32(&ret->g1, secp256k1_scalar_consts_g1, NULL);
- secp256k1_scalar_set_b32(&ret->g2, secp256k1_scalar_consts_g2, NULL);
-#endif
-
- /* Set the global pointer. */
- secp256k1_scalar_consts = ret;
-}
-
-static void secp256k1_scalar_stop(void) {
- if (secp256k1_scalar_consts == NULL)
- return;
-
- secp256k1_scalar_consts_t *c = (secp256k1_scalar_consts_t*)secp256k1_scalar_consts;
- secp256k1_scalar_consts = NULL;
- free(c);
-}
-
#ifndef USE_NUM_NONE
static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a) {
unsigned char c[32];
@@ -146,12 +31,21 @@ static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_
secp256k1_num_set_bin(r, c, 32);
}
+/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) {
- *r = secp256k1_scalar_consts->order;
+ static const unsigned char order[32] = {
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
+ 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
+ 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
+ };
+ secp256k1_num_set_bin(r, order, 32);
}
#endif
static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) {
+ secp256k1_scalar_t *t;
+ int i;
/* First compute x ^ (2^N - 1) for some values of N. */
secp256k1_scalar_t x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127;
@@ -175,129 +69,129 @@ static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scal
secp256k1_scalar_mul(&x8, &x8, x);
secp256k1_scalar_sqr(&x15, &x8);
- for (int i=0; i<6; i++)
+ for (i = 0; i < 6; i++)
secp256k1_scalar_sqr(&x15, &x15);
secp256k1_scalar_mul(&x15, &x15, &x7);
secp256k1_scalar_sqr(&x30, &x15);
- for (int i=0; i<14; i++)
+ for (i = 0; i < 14; i++)
secp256k1_scalar_sqr(&x30, &x30);
secp256k1_scalar_mul(&x30, &x30, &x15);
secp256k1_scalar_sqr(&x60, &x30);
- for (int i=0; i<29; i++)
+ for (i = 0; i < 29; i++)
secp256k1_scalar_sqr(&x60, &x60);
secp256k1_scalar_mul(&x60, &x60, &x30);
secp256k1_scalar_sqr(&x120, &x60);
- for (int i=0; i<59; i++)
+ for (i = 0; i < 59; i++)
secp256k1_scalar_sqr(&x120, &x120);
secp256k1_scalar_mul(&x120, &x120, &x60);
secp256k1_scalar_sqr(&x127, &x120);
- for (int i=0; i<6; i++)
+ for (i = 0; i < 6; i++)
secp256k1_scalar_sqr(&x127, &x127);
secp256k1_scalar_mul(&x127, &x127, &x7);
/* Then accumulate the final result (t starts at x127). */
- secp256k1_scalar_t *t = &x127;
- for (int i=0; i<2; i++) /* 0 */
+ t = &x127;
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<4; i++) /* 0 */
+ for (i = 0; i < 4; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
- for (int i=0; i<2; i++) /* 0 */
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<2; i++) /* 0 */
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<2; i++) /* 0 */
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<4; i++) /* 0 */
+ for (i = 0; i < 4; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
- for (int i=0; i<3; i++) /* 0 */
+ for (i = 0; i < 3; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
- for (int i=0; i<4; i++) /* 0 */
+ for (i = 0; i < 4; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
- for (int i=0; i<5; i++) /* 00 */
+ for (i = 0; i < 5; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
- for (int i=0; i<4; i++) /* 00 */
+ for (i = 0; i < 4; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
- for (int i=0; i<2; i++) /* 0 */
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<2; i++) /* 0 */
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<5; i++) /* 0 */
+ for (i = 0; i < 5; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x4); /* 1111 */
- for (int i=0; i<2; i++) /* 0 */
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<3; i++) /* 00 */
+ for (i = 0; i < 3; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<4; i++) /* 000 */
+ for (i = 0; i < 4; i++) /* 000 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<2; i++) /* 0 */
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<10; i++) /* 0000000 */
+ for (i = 0; i < 10; i++) /* 0000000 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
- for (int i=0; i<4; i++) /* 0 */
+ for (i = 0; i < 4; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
- for (int i=0; i<9; i++) /* 0 */
+ for (i = 0; i < 9; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
- for (int i=0; i<2; i++) /* 0 */
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<3; i++) /* 00 */
+ for (i = 0; i < 3; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<3; i++) /* 00 */
+ for (i = 0; i < 3; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<5; i++) /* 0 */
+ for (i = 0; i < 5; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x4); /* 1111 */
- for (int i=0; i<2; i++) /* 0 */
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<5; i++) /* 000 */
+ for (i = 0; i < 5; i++) /* 000 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
- for (int i=0; i<4; i++) /* 00 */
+ for (i = 0; i < 4; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
- for (int i=0; i<2; i++) /* 0 */
+ for (i = 0; i < 2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<8; i++) /* 000000 */
+ for (i = 0; i < 8; i++) /* 000000 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
- for (int i=0; i<3; i++) /* 0 */
+ for (i = 0; i < 3; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
- for (int i=0; i<3; i++) /* 00 */
+ for (i = 0; i < 3; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<6; i++) /* 00000 */
+ for (i = 0; i < 6; i++) /* 00000 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
- for (int i=0; i<8; i++) /* 00 */
+ for (i = 0; i < 8; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(r, t, &x6); /* 111111 */
}
@@ -307,10 +201,11 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_
secp256k1_scalar_inverse(r, x);
#elif defined(USE_SCALAR_INV_NUM)
unsigned char b[32];
+ secp256k1_num_t n, m;
secp256k1_scalar_get_b32(b, x);
- secp256k1_num_t n;
secp256k1_num_set_bin(&n, b, 32);
- secp256k1_num_mod_inverse(&n, &n, &secp256k1_scalar_consts->order);
+ secp256k1_scalar_order_get_num(&m);
+ secp256k1_num_mod_inverse(&n, &n, &m);
secp256k1_num_get_bin(b, 32, &n);
secp256k1_scalar_set_b32(r, b, NULL);
#else
@@ -319,16 +214,74 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_
}
#ifdef USE_ENDOMORPHISM
+/**
+ * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
+ * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
+ * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
+ *
+ * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
+ * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
+ * and k2 have a small size.
+ * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
+ *
+ * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
+ * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
+ * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
+ * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
+ *
+ * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
+ * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
+ * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
+ *
+ * g1, g2 are precomputed constants used to replace division with a rounded multiplication
+ * when decomposing the scalar for an endomorphism-based point multiplication.
+ *
+ * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
+ * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
+ *
+ * The derivation is described in the paper "Efficient Software Implementation of Public-Key
+ * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
+ * Section 4.3 (here we use a somewhat higher-precision estimate):
+ * d = a1*b2 - b1*a2
+ * g1 = round((2^272)*b2/d)
+ * g2 = round((2^272)*b1/d)
+ *
+ * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
+ * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
+ *
+ * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
+ */
+
static void secp256k1_scalar_split_lambda_var(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) {
+ secp256k1_scalar_t c1, c2;
+ static const secp256k1_scalar_t minus_lambda = SECP256K1_SCALAR_CONST(
+ 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
+ 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
+ );
+ static const secp256k1_scalar_t minus_b1 = SECP256K1_SCALAR_CONST(
+ 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
+ 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
+ );
+ static const secp256k1_scalar_t minus_b2 = SECP256K1_SCALAR_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
+ 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
+ );
+ static const secp256k1_scalar_t g1 = SECP256K1_SCALAR_CONST(
+ 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
+ 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
+ );
+ static const secp256k1_scalar_t g2 = SECP256K1_SCALAR_CONST(
+ 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
+ 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
+ );
VERIFY_CHECK(r1 != a);
VERIFY_CHECK(r2 != a);
- secp256k1_scalar_t c1, c2;
- secp256k1_scalar_mul_shift_var(&c1, a, &secp256k1_scalar_consts->g1, 272);
- secp256k1_scalar_mul_shift_var(&c2, a, &secp256k1_scalar_consts->g2, 272);
- secp256k1_scalar_mul(&c1, &c1, &secp256k1_scalar_consts->minus_b1);
- secp256k1_scalar_mul(&c2, &c2, &secp256k1_scalar_consts->minus_b2);
+ secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
+ secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
+ secp256k1_scalar_mul(&c1, &c1, &minus_b1);
+ secp256k1_scalar_mul(&c2, &c2, &minus_b2);
secp256k1_scalar_add(r2, &c1, &c2);
- secp256k1_scalar_mul(r1, r2, &secp256k1_scalar_consts->minus_lambda);
+ secp256k1_scalar_mul(r1, r2, &minus_lambda);
secp256k1_scalar_add(r1, r1, a);
}
#endif