diff options
Diffstat (limited to 'src/secp256k1/src/ecmult_impl.h')
-rw-r--r-- | src/secp256k1/src/ecmult_impl.h | 229 |
1 files changed, 113 insertions, 116 deletions
diff --git a/src/secp256k1/src/ecmult_impl.h b/src/secp256k1/src/ecmult_impl.h index 5bd4d4d23d..bbc820c77c 100644 --- a/src/secp256k1/src/ecmult_impl.h +++ b/src/secp256k1/src/ecmult_impl.h @@ -14,7 +14,7 @@ #include "group.h" #include "scalar.h" #include "ecmult.h" -#include "ecmult_static_pre_g.h" +#include "precomputed_ecmult.h" #if defined(EXHAUSTIVE_TEST_ORDER) /* We need to lower these values for exhaustive tests because @@ -47,7 +47,7 @@ /* The number of objects allocated on the scratch space for ecmult_multi algorithms */ #define PIPPENGER_SCRATCH_OBJECTS 6 -#define STRAUSS_SCRATCH_OBJECTS 7 +#define STRAUSS_SCRATCH_OBJECTS 5 #define PIPPENGER_MAX_BUCKET_WINDOW 12 @@ -56,14 +56,23 @@ #define ECMULT_MAX_POINTS_PER_BATCH 5000000 -/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain - * the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will - * contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z. - * Prej's Z values are undefined, except for the last value. +/** Fill a table 'pre_a' with precomputed odd multiples of a. + * pre_a will contain [1*a,3*a,...,(2*n-1)*a], so it needs space for n group elements. + * zr needs space for n field elements. + * + * Although pre_a is an array of _ge rather than _gej, it actually represents elements + * in Jacobian coordinates with their z coordinates omitted. The omitted z-coordinates + * can be recovered using z and zr. Using the notation z(b) to represent the omitted + * z coordinate of b: + * - z(pre_a[n-1]) = 'z' + * - z(pre_a[i-1]) = z(pre_a[i]) / zr[i] for n > i > 0 + * + * Lastly the zr[0] value, which isn't used above, is set so that: + * - a.z = z(pre_a[0]) / zr[0] */ -static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) { - secp256k1_gej d; - secp256k1_ge a_ge, d_ge; +static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_ge *pre_a, secp256k1_fe *zr, secp256k1_fe *z, const secp256k1_gej *a) { + secp256k1_gej d, ai; + secp256k1_ge d_ge; int i; VERIFY_CHECK(!a->infinity); @@ -71,75 +80,74 @@ static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, sec secp256k1_gej_double_var(&d, a, NULL); /* - * Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate - * of 'd', and scale the 1P starting value's x/y coordinates without changing its z. + * Perform the additions using an isomorphic curve Y^2 = X^3 + 7*C^6 where C := d.z. + * The isomorphism, phi, maps a secp256k1 point (x, y) to the point (x*C^2, y*C^3) on the other curve. + * In Jacobian coordinates phi maps (x, y, z) to (x*C^2, y*C^3, z) or, equivalently to (x, y, z/C). + * + * phi(x, y, z) = (x*C^2, y*C^3, z) = (x, y, z/C) + * d_ge := phi(d) = (d.x, d.y, 1) + * ai := phi(a) = (a.x*C^2, a.y*C^3, a.z) + * + * The group addition functions work correctly on these isomorphic curves. + * In particular phi(d) is easy to represent in affine coordinates under this isomorphism. + * This lets us use the faster secp256k1_gej_add_ge_var group addition function that we wouldn't be able to use otherwise. */ - d_ge.x = d.x; - d_ge.y = d.y; - d_ge.infinity = 0; - - secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z); - prej[0].x = a_ge.x; - prej[0].y = a_ge.y; - prej[0].z = a->z; - prej[0].infinity = 0; + secp256k1_ge_set_xy(&d_ge, &d.x, &d.y); + secp256k1_ge_set_gej_zinv(&pre_a[0], a, &d.z); + secp256k1_gej_set_ge(&ai, &pre_a[0]); + ai.z = a->z; + /* pre_a[0] is the point (a.x*C^2, a.y*C^3, a.z*C) which is equvalent to a. + * Set zr[0] to C, which is the ratio between the omitted z(pre_a[0]) value and a.z. + */ zr[0] = d.z; + for (i = 1; i < n; i++) { - secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]); + secp256k1_gej_add_ge_var(&ai, &ai, &d_ge, &zr[i]); + secp256k1_ge_set_xy(&pre_a[i], &ai.x, &ai.y); } - /* - * Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only - * the final point's z coordinate is actually used though, so just update that. + /* Multiply the last z-coordinate by C to undo the isomorphism. + * Since the z-coordinates of the pre_a values are implied by the zr array of z-coordinate ratios, + * undoing the isomorphism here undoes the isomorphism for all pre_a values. */ - secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z); + secp256k1_fe_mul(z, &ai.z, &d.z); } -/** Fill a table 'pre' with precomputed odd multiples of a. - * - * The resulting point set is brought to a single constant Z denominator, stores the X and Y - * coordinates as ge_storage points in pre, and stores the global Z in rz. - * It only operates on tables sized for WINDOW_A wnaf multiples. - * - * To compute a*P + b*G, we compute a table for P using this function, - * and use the precomputed table in <ecmult_static_pre_g.h> for G. - */ -static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) { - secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)]; - secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)]; +#define SECP256K1_ECMULT_TABLE_VERIFY(n,w) \ + VERIFY_CHECK(((n) & 1) == 1); \ + VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ + VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); - /* Compute the odd multiples in Jacobian form. */ - secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a); - /* Bring them to the same Z denominator. */ - secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr); +SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge(secp256k1_ge *r, const secp256k1_ge *pre, int n, int w) { + SECP256K1_ECMULT_TABLE_VERIFY(n,w) + if (n > 0) { + *r = pre[(n-1)/2]; + } else { + *r = pre[(-n-1)/2]; + secp256k1_fe_negate(&(r->y), &(r->y), 1); + } } -/** The following two macro retrieves a particular odd multiple from a table - * of precomputed multiples. */ -#define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \ - VERIFY_CHECK(((n) & 1) == 1); \ - VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ - VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ - if ((n) > 0) { \ - *(r) = (pre)[((n)-1)/2]; \ - } else { \ - *(r) = (pre)[(-(n)-1)/2]; \ - secp256k1_fe_negate(&((r)->y), &((r)->y), 1); \ - } \ -} while(0) - -#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \ - VERIFY_CHECK(((n) & 1) == 1); \ - VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ - VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ - if ((n) > 0) { \ - secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \ - } else { \ - secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \ - secp256k1_fe_negate(&((r)->y), &((r)->y), 1); \ - } \ -} while(0) +SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_lambda(secp256k1_ge *r, const secp256k1_ge *pre, const secp256k1_fe *x, int n, int w) { + SECP256K1_ECMULT_TABLE_VERIFY(n,w) + if (n > 0) { + secp256k1_ge_set_xy(r, &x[(n-1)/2], &pre[(n-1)/2].y); + } else { + secp256k1_ge_set_xy(r, &x[(-n-1)/2], &pre[(-n-1)/2].y); + secp256k1_fe_negate(&(r->y), &(r->y), 1); + } +} + +SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_storage(secp256k1_ge *r, const secp256k1_ge_storage *pre, int n, int w) { + SECP256K1_ECMULT_TABLE_VERIFY(n,w) + if (n > 0) { + secp256k1_ge_from_storage(r, &pre[(n-1)/2]); + } else { + secp256k1_ge_from_storage(r, &pre[(-n-1)/2]); + secp256k1_fe_negate(&(r->y), &(r->y), 1); + } +} /** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), * with the following guarantees: @@ -201,19 +209,16 @@ static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, } struct secp256k1_strauss_point_state { - secp256k1_scalar na_1, na_lam; int wnaf_na_1[129]; int wnaf_na_lam[129]; int bits_na_1; int bits_na_lam; - size_t input_pos; }; struct secp256k1_strauss_state { - secp256k1_gej* prej; - secp256k1_fe* zr; + /* aux is used to hold z-ratios, and then used to hold pre_a[i].x * BETA values. */ + secp256k1_fe* aux; secp256k1_ge* pre_a; - secp256k1_ge* pre_a_lam; struct secp256k1_strauss_point_state* ps; }; @@ -231,17 +236,19 @@ static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state * size_t np; size_t no = 0; + secp256k1_fe_set_int(&Z, 1); for (np = 0; np < num; ++np) { + secp256k1_gej tmp; + secp256k1_scalar na_1, na_lam; if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) { continue; } - state->ps[no].input_pos = np; /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ - secp256k1_scalar_split_lambda(&state->ps[no].na_1, &state->ps[no].na_lam, &na[np]); + secp256k1_scalar_split_lambda(&na_1, &na_lam, &na[np]); /* build wnaf representation for na_1 and na_lam. */ - state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 129, &state->ps[no].na_1, WINDOW_A); - state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 129, &state->ps[no].na_lam, WINDOW_A); + state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 129, &na_1, WINDOW_A); + state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 129, &na_lam, WINDOW_A); VERIFY_CHECK(state->ps[no].bits_na_1 <= 129); VERIFY_CHECK(state->ps[no].bits_na_lam <= 129); if (state->ps[no].bits_na_1 > bits) { @@ -250,40 +257,36 @@ static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state * if (state->ps[no].bits_na_lam > bits) { bits = state->ps[no].bits_na_lam; } - ++no; - } - /* Calculate odd multiples of a. - * All multiples are brought to the same Z 'denominator', which is stored - * in Z. Due to secp256k1' isomorphism we can do all operations pretending - * that the Z coordinate was 1, use affine addition formulae, and correct - * the Z coordinate of the result once at the end. - * The exception is the precomputed G table points, which are actually - * affine. Compared to the base used for other points, they have a Z ratio - * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same - * isomorphism to efficiently add with a known Z inverse. - */ - if (no > 0) { - /* Compute the odd multiples in Jacobian form. */ - secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej, state->zr, &a[state->ps[0].input_pos]); - for (np = 1; np < no; ++np) { - secp256k1_gej tmp = a[state->ps[np].input_pos]; + /* Calculate odd multiples of a. + * All multiples are brought to the same Z 'denominator', which is stored + * in Z. Due to secp256k1' isomorphism we can do all operations pretending + * that the Z coordinate was 1, use affine addition formulae, and correct + * the Z coordinate of the result once at the end. + * The exception is the precomputed G table points, which are actually + * affine. Compared to the base used for other points, they have a Z ratio + * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same + * isomorphism to efficiently add with a known Z inverse. + */ + tmp = a[np]; + if (no) { #ifdef VERIFY - secp256k1_fe_normalize_var(&(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z)); + secp256k1_fe_normalize_var(&Z); #endif - secp256k1_gej_rescale(&tmp, &(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z)); - secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &tmp); - secp256k1_fe_mul(state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &(a[state->ps[np].input_pos].z)); + secp256k1_gej_rescale(&tmp, &Z); } - /* Bring them to the same Z denominator. */ - secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, &Z, state->prej, state->zr); - } else { - secp256k1_fe_set_int(&Z, 1); + secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->pre_a + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &Z, &tmp); + if (no) secp256k1_fe_mul(state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &(a[np].z)); + + ++no; } + /* Bring them to the same Z denominator. */ + secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, state->aux); + for (np = 0; np < no; ++np) { for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { - secp256k1_ge_mul_lambda(&state->pre_a_lam[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i]); + secp256k1_fe_mul(&state->aux[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i].x, &secp256k1_const_beta); } } @@ -309,20 +312,20 @@ static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state * secp256k1_gej_double_var(r, r, NULL); for (np = 0; np < no; ++np) { if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) { - ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); + secp256k1_ecmult_table_get_ge(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); } if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) { - ECMULT_TABLE_GET_GE(&tmpa, state->pre_a_lam + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); + secp256k1_ecmult_table_get_ge_lambda(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); } } if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { - ECMULT_TABLE_GET_GE_STORAGE(&tmpa, secp256k1_pre_g, n, WINDOW_G); + secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g, n, WINDOW_G); secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); } if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { - ECMULT_TABLE_GET_GE_STORAGE(&tmpa, secp256k1_pre_g_128, n, WINDOW_G); + secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g_128, n, WINDOW_G); secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); } } @@ -333,23 +336,19 @@ static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state * } static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { - secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)]; - secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)]; + secp256k1_fe aux[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; struct secp256k1_strauss_point_state ps[1]; - secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; struct secp256k1_strauss_state state; - state.prej = prej; - state.zr = zr; + state.aux = aux; state.pre_a = pre_a; - state.pre_a_lam = pre_a_lam; state.ps = ps; secp256k1_ecmult_strauss_wnaf(&state, r, 1, a, na, ng); } static size_t secp256k1_strauss_scratch_size(size_t n_points) { - static const size_t point_size = (2 * sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); + static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); return n_points*point_size; } @@ -370,13 +369,11 @@ static int secp256k1_ecmult_strauss_batch(const secp256k1_callback* error_callba * constant and strauss_scratch_size accordingly. */ points = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_gej)); scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_scalar)); - state.prej = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_gej)); - state.zr = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe)); + state.aux = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe)); state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); - state.pre_a_lam = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct secp256k1_strauss_point_state)); - if (points == NULL || scalars == NULL || state.prej == NULL || state.zr == NULL || state.pre_a == NULL || state.pre_a_lam == NULL || state.ps == NULL) { + if (points == NULL || scalars == NULL || state.aux == NULL || state.pre_a == NULL || state.ps == NULL) { secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); return 0; } |