aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/src/ecdsa_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/secp256k1/src/ecdsa_impl.h')
-rw-r--r--src/secp256k1/src/ecdsa_impl.h59
1 files changed, 43 insertions, 16 deletions
diff --git a/src/secp256k1/src/ecdsa_impl.h b/src/secp256k1/src/ecdsa_impl.h
index 8825d05fed..674650c1e9 100644
--- a/src/secp256k1/src/ecdsa_impl.h
+++ b/src/secp256k1/src/ecdsa_impl.h
@@ -109,25 +109,53 @@ static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const se
return 1;
}
-static int secp256k1_ecdsa_sig_recompute(secp256k1_scalar_t *r2, const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) {
+static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) {
if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s))
return 0;
- int ret = 0;
secp256k1_scalar_t sn, u1, u2;
secp256k1_scalar_inverse_var(&sn, &sig->s);
secp256k1_scalar_mul(&u1, &sn, message);
secp256k1_scalar_mul(&u2, &sn, &sig->r);
secp256k1_gej_t pubkeyj; secp256k1_gej_set_ge(&pubkeyj, pubkey);
secp256k1_gej_t pr; secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1);
- if (!secp256k1_gej_is_infinity(&pr)) {
- secp256k1_fe_t xr; secp256k1_gej_get_x_var(&xr, &pr);
- secp256k1_fe_normalize_var(&xr);
- unsigned char xrb[32]; secp256k1_fe_get_b32(xrb, &xr);
- secp256k1_scalar_set_b32(r2, xrb, NULL);
- ret = 1;
+ if (secp256k1_gej_is_infinity(&pr)) {
+ return 0;
+ }
+ unsigned char c[32];
+ secp256k1_scalar_get_b32(c, &sig->r);
+ secp256k1_fe_t xr;
+ secp256k1_fe_set_b32(&xr, c);
+
+ // We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
+ // in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
+ // compute the remainder modulo n, and compare it to xr. However:
+ //
+ // xr == X(pr) mod n
+ // <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
+ // [Since 2 * n > p, h can only be 0 or 1]
+ // <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
+ // [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
+ // <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
+ // [Multiplying both sides of the equations by pr.z^2 mod p]
+ // <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
+ //
+ // Thus, we can avoid the inversion, but we have to check both cases separately.
+ // secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
+ if (secp256k1_gej_eq_x_var(&xr, &pr)) {
+ // xr.x == xr * xr.z^2 mod p, so the signature is valid.
+ return 1;
+ }
+ if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_consts->p_minus_order) >= 0) {
+ // xr + p >= n, so we can skip testing the second case.
+ return 0;
+ }
+ secp256k1_fe_add(&xr, &secp256k1_ecdsa_consts->order_as_fe);
+ if (secp256k1_gej_eq_x_var(&xr, &pr)) {
+ // (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid.
+ return 1;
}
- return ret;
+ return 0;
}
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid) {
@@ -159,13 +187,6 @@ static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256
return !secp256k1_gej_is_infinity(&qj);
}
-static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) {
- secp256k1_scalar_t r2;
- int ret = 0;
- ret = secp256k1_ecdsa_sig_recompute(&r2, sig, pubkey, message) && secp256k1_scalar_eq(&sig->r, &r2);
- return ret;
-}
-
static int secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid) {
secp256k1_gej_t rp;
secp256k1_ecmult_gen(&rp, nonce);
@@ -177,6 +198,12 @@ static int secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_
secp256k1_fe_get_b32(b, &r.x);
int overflow = 0;
secp256k1_scalar_set_b32(&sig->r, b, &overflow);
+ if (secp256k1_scalar_is_zero(&sig->r)) {
+ /* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */
+ secp256k1_gej_clear(&rp);
+ secp256k1_ge_clear(&r);
+ return 0;
+ }
if (recid)
*recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
secp256k1_scalar_t n;