diff options
Diffstat (limited to 'src/secp256k1/sage/group_prover.sage')
-rw-r--r-- | src/secp256k1/sage/group_prover.sage | 322 |
1 files changed, 322 insertions, 0 deletions
diff --git a/src/secp256k1/sage/group_prover.sage b/src/secp256k1/sage/group_prover.sage new file mode 100644 index 0000000000..8521f07999 --- /dev/null +++ b/src/secp256k1/sage/group_prover.sage @@ -0,0 +1,322 @@ +# This code supports verifying group implementations which have branches +# or conditional statements (like cmovs), by allowing each execution path +# to independently set assumptions on input or intermediary variables. +# +# The general approach is: +# * A constraint is a tuple of two sets of symbolic expressions: +# the first of which are required to evaluate to zero, the second of which +# are required to evaluate to nonzero. +# - A constraint is said to be conflicting if any of its nonzero expressions +# is in the ideal with basis the zero expressions (in other words: when the +# zero expressions imply that one of the nonzero expressions are zero). +# * There is a list of laws that describe the intended behaviour, including +# laws for addition and doubling. Each law is called with the symbolic point +# coordinates as arguments, and returns: +# - A constraint describing the assumptions under which it is applicable, +# called "assumeLaw" +# - A constraint describing the requirements of the law, called "require" +# * Implementations are transliterated into functions that operate as well on +# algebraic input points, and are called once per combination of branches +# executed. Each execution returns: +# - A constraint describing the assumptions this implementation requires +# (such as Z1=1), called "assumeFormula" +# - A constraint describing the assumptions this specific branch requires, +# but which is by construction guaranteed to cover the entire space by +# merging the results from all branches, called "assumeBranch" +# - The result of the computation +# * All combinations of laws with implementation branches are tried, and: +# - If the combination of assumeLaw, assumeFormula, and assumeBranch results +# in a conflict, it means this law does not apply to this branch, and it is +# skipped. +# - For others, we try to prove the require constraints hold, assuming the +# information in assumeLaw + assumeFormula + assumeBranch, and if this does +# not succeed, we fail. +# + To prove an expression is zero, we check whether it belongs to the +# ideal with the assumed zero expressions as basis. This test is exact. +# + To prove an expression is nonzero, we check whether each of its +# factors is contained in the set of nonzero assumptions' factors. +# This test is not exact, so various combinations of original and +# reduced expressions' factors are tried. +# - If we succeed, we print out the assumptions from assumeFormula that +# weren't implied by assumeLaw already. Those from assumeBranch are skipped, +# as we assume that all constraints in it are complementary with each other. +# +# Based on the sage verification scripts used in the Explicit-Formulas Database +# by Tanja Lange and others, see http://hyperelliptic.org/EFD + +class fastfrac: + """Fractions over rings.""" + + def __init__(self,R,top,bot=1): + """Construct a fractional, given a ring, a numerator, and denominator.""" + self.R = R + if parent(top) == ZZ or parent(top) == R: + self.top = R(top) + self.bot = R(bot) + elif top.__class__ == fastfrac: + self.top = top.top + self.bot = top.bot * bot + else: + self.top = R(numerator(top)) + self.bot = R(denominator(top)) * bot + + def iszero(self,I): + """Return whether this fraction is zero given an ideal.""" + return self.top in I and self.bot not in I + + def reduce(self,assumeZero): + zero = self.R.ideal(map(numerator, assumeZero)) + return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot)) + + def __add__(self,other): + """Add two fractions.""" + if parent(other) == ZZ: + return fastfrac(self.R,self.top + self.bot * other,self.bot) + if other.__class__ == fastfrac: + return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot) + return NotImplemented + + def __sub__(self,other): + """Subtract two fractions.""" + if parent(other) == ZZ: + return fastfrac(self.R,self.top - self.bot * other,self.bot) + if other.__class__ == fastfrac: + return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot) + return NotImplemented + + def __neg__(self): + """Return the negation of a fraction.""" + return fastfrac(self.R,-self.top,self.bot) + + def __mul__(self,other): + """Multiply two fractions.""" + if parent(other) == ZZ: + return fastfrac(self.R,self.top * other,self.bot) + if other.__class__ == fastfrac: + return fastfrac(self.R,self.top * other.top,self.bot * other.bot) + return NotImplemented + + def __rmul__(self,other): + """Multiply something else with a fraction.""" + return self.__mul__(other) + + def __div__(self,other): + """Divide two fractions.""" + if parent(other) == ZZ: + return fastfrac(self.R,self.top,self.bot * other) + if other.__class__ == fastfrac: + return fastfrac(self.R,self.top * other.bot,self.bot * other.top) + return NotImplemented + + def __pow__(self,other): + """Compute a power of a fraction.""" + if parent(other) == ZZ: + if other < 0: + # Negative powers require flipping top and bottom + return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other)) + else: + return fastfrac(self.R,self.top ^ other,self.bot ^ other) + return NotImplemented + + def __str__(self): + return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))" + def __repr__(self): + return "%s" % self + + def numerator(self): + return self.top + +class constraints: + """A set of constraints, consisting of zero and nonzero expressions. + + Constraints can either be used to express knowledge or a requirement. + + Both the fields zero and nonzero are maps from expressions to description + strings. The expressions that are the keys in zero are required to be zero, + and the expressions that are the keys in nonzero are required to be nonzero. + + Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in + nonzero could be multiplied into a single key. This is often much less + efficient to work with though, so we keep them separate inside the + constraints. This allows higher-level code to do fast checks on the individual + nonzero elements, or combine them if needed for stronger checks. + + We can't multiply the different zero elements, as it would suffice for one of + the factors to be zero, instead of all of them. Instead, the zero elements are + typically combined into an ideal first. + """ + + def __init__(self, **kwargs): + if 'zero' in kwargs: + self.zero = dict(kwargs['zero']) + else: + self.zero = dict() + if 'nonzero' in kwargs: + self.nonzero = dict(kwargs['nonzero']) + else: + self.nonzero = dict() + + def negate(self): + return constraints(zero=self.nonzero, nonzero=self.zero) + + def __add__(self, other): + zero = self.zero.copy() + zero.update(other.zero) + nonzero = self.nonzero.copy() + nonzero.update(other.nonzero) + return constraints(zero=zero, nonzero=nonzero) + + def __str__(self): + return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero) + + def __repr__(self): + return "%s" % self + + +def conflicts(R, con): + """Check whether any of the passed non-zero assumptions is implied by the zero assumptions""" + zero = R.ideal(map(numerator, con.zero)) + if 1 in zero: + return True + # First a cheap check whether any of the individual nonzero terms conflict on + # their own. + for nonzero in con.nonzero: + if nonzero.iszero(zero): + return True + # It can be the case that entries in the nonzero set do not individually + # conflict with the zero set, but their combination does. For example, knowing + # that either x or y is zero is equivalent to having x*y in the zero set. + # Having x or y individually in the nonzero set is not a conflict, but both + # simultaneously is, so that is the right thing to check for. + if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero): + return True + return False + + +def get_nonzero_set(R, assume): + """Calculate a simple set of nonzero expressions""" + zero = R.ideal(map(numerator, assume.zero)) + nonzero = set() + for nz in map(numerator, assume.nonzero): + for (f,n) in nz.factor(): + nonzero.add(f) + rnz = zero.reduce(nz) + for (f,n) in rnz.factor(): + nonzero.add(f) + return nonzero + + +def prove_nonzero(R, exprs, assume): + """Check whether an expression is provably nonzero, given assumptions""" + zero = R.ideal(map(numerator, assume.zero)) + nonzero = get_nonzero_set(R, assume) + expl = set() + ok = True + for expr in exprs: + if numerator(expr) in zero: + return (False, [exprs[expr]]) + allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1) + for (f, n) in allexprs.factor(): + if f not in nonzero: + ok = False + if ok: + return (True, None) + ok = True + for (f, n) in zero.reduce(numerator(allexprs)).factor(): + if f not in nonzero: + ok = False + if ok: + return (True, None) + ok = True + for expr in exprs: + for (f,n) in numerator(expr).factor(): + if f not in nonzero: + ok = False + if ok: + return (True, None) + ok = True + for expr in exprs: + for (f,n) in zero.reduce(numerator(expr)).factor(): + if f not in nonzero: + expl.add(exprs[expr]) + if expl: + return (False, list(expl)) + else: + return (True, None) + + +def prove_zero(R, exprs, assume): + """Check whether all of the passed expressions are provably zero, given assumptions""" + r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume) + if not r: + return (False, map(lambda x: "Possibly zero denominator: %s" % x, e)) + zero = R.ideal(map(numerator, assume.zero)) + nonzero = prod(x for x in assume.nonzero) + expl = [] + for expr in exprs: + if not expr.iszero(zero): + expl.append(exprs[expr]) + if not expl: + return (True, None) + return (False, expl) + + +def describe_extra(R, assume, assumeExtra): + """Describe what assumptions are added, given existing assumptions""" + zerox = assume.zero.copy() + zerox.update(assumeExtra.zero) + zero = R.ideal(map(numerator, assume.zero)) + zeroextra = R.ideal(map(numerator, zerox)) + nonzero = get_nonzero_set(R, assume) + ret = set() + # Iterate over the extra zero expressions + for base in assumeExtra.zero: + if base not in zero: + add = [] + for (f, n) in numerator(base).factor(): + if f not in nonzero: + add += ["%s" % f] + if add: + ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base]) + # Iterate over the extra nonzero expressions + for nz in assumeExtra.nonzero: + nzr = zeroextra.reduce(numerator(nz)) + if nzr not in zeroextra: + for (f,n) in nzr.factor(): + if zeroextra.reduce(f) not in nonzero: + ret.add("%s != 0" % zeroextra.reduce(f)) + return ", ".join(x for x in ret) + + +def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require): + """Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions""" + assume = assumeLaw + assumeAssert + assumeBranch + + if conflicts(R, assume): + # This formula does not apply + return None + + describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert) + + ok, msg = prove_zero(R, require.zero, assume) + if not ok: + return "FAIL, %s fails (assuming %s)" % (str(msg), describe) + + res, expl = prove_nonzero(R, require.nonzero, assume) + if not res: + return "FAIL, %s fails (assuming %s)" % (str(expl), describe) + + if describe != "": + return "OK (assuming %s)" % describe + else: + return "OK" + + +def concrete_verify(c): + for k in c.zero: + if k != 0: + return (False, c.zero[k]) + for k in c.nonzero: + if k == 0: + return (False, c.nonzero[k]) + return (True, None) |