diff options
Diffstat (limited to 'src/secp256k1/examples')
-rw-r--r-- | src/secp256k1/examples/EXAMPLES_COPYING | 121 | ||||
-rw-r--r-- | src/secp256k1/examples/ecdh.c | 127 | ||||
-rw-r--r-- | src/secp256k1/examples/ecdsa.c | 137 | ||||
-rw-r--r-- | src/secp256k1/examples/random.h | 73 | ||||
-rw-r--r-- | src/secp256k1/examples/schnorr.c | 152 |
5 files changed, 610 insertions, 0 deletions
diff --git a/src/secp256k1/examples/EXAMPLES_COPYING b/src/secp256k1/examples/EXAMPLES_COPYING new file mode 100644 index 0000000000..0e259d42c9 --- /dev/null +++ b/src/secp256k1/examples/EXAMPLES_COPYING @@ -0,0 +1,121 @@ +Creative Commons Legal Code + +CC0 1.0 Universal + + CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE + LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN + ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS + INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES + REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS + PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM + THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED + HEREUNDER. + +Statement of Purpose + +The laws of most jurisdictions throughout the world automatically confer +exclusive Copyright and Related Rights (defined below) upon the creator +and subsequent owner(s) (each and all, an "owner") of an original work of +authorship and/or a database (each, a "Work"). + +Certain owners wish to permanently relinquish those rights to a Work for +the purpose of contributing to a commons of creative, cultural and +scientific works ("Commons") that the public can reliably and without fear +of later claims of infringement build upon, modify, incorporate in other +works, reuse and redistribute as freely as possible in any form whatsoever +and for any purposes, including without limitation commercial purposes. +These owners may contribute to the Commons to promote the ideal of a free +culture and the further production of creative, cultural and scientific +works, or to gain reputation or greater distribution for their Work in +part through the use and efforts of others. + +For these and/or other purposes and motivations, and without any +expectation of additional consideration or compensation, the person +associating CC0 with a Work (the "Affirmer"), to the extent that he or she +is an owner of Copyright and Related Rights in the Work, voluntarily +elects to apply CC0 to the Work and publicly distribute the Work under its +terms, with knowledge of his or her Copyright and Related Rights in the +Work and the meaning and intended legal effect of CC0 on those rights. + +1. Copyright and Related Rights. A Work made available under CC0 may be +protected by copyright and related or neighboring rights ("Copyright and +Related Rights"). Copyright and Related Rights include, but are not +limited to, the following: + + i. the right to reproduce, adapt, distribute, perform, display, + communicate, and translate a Work; + ii. moral rights retained by the original author(s) and/or performer(s); +iii. publicity and privacy rights pertaining to a person's image or + likeness depicted in a Work; + iv. rights protecting against unfair competition in regards to a Work, + subject to the limitations in paragraph 4(a), below; + v. rights protecting the extraction, dissemination, use and reuse of data + in a Work; + vi. database rights (such as those arising under Directive 96/9/EC of the + European Parliament and of the Council of 11 March 1996 on the legal + protection of databases, and under any national implementation + thereof, including any amended or successor version of such + directive); and +vii. other similar, equivalent or corresponding rights throughout the + world based on applicable law or treaty, and any national + implementations thereof. + +2. Waiver. To the greatest extent permitted by, but not in contravention +of, applicable law, Affirmer hereby overtly, fully, permanently, +irrevocably and unconditionally waives, abandons, and surrenders all of +Affirmer's Copyright and Related Rights and associated claims and causes +of action, whether now known or unknown (including existing as well as +future claims and causes of action), in the Work (i) in all territories +worldwide, (ii) for the maximum duration provided by applicable law or +treaty (including future time extensions), (iii) in any current or future +medium and for any number of copies, and (iv) for any purpose whatsoever, +including without limitation commercial, advertising or promotional +purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each +member of the public at large and to the detriment of Affirmer's heirs and +successors, fully intending that such Waiver shall not be subject to +revocation, rescission, cancellation, termination, or any other legal or +equitable action to disrupt the quiet enjoyment of the Work by the public +as contemplated by Affirmer's express Statement of Purpose. + +3. Public License Fallback. Should any part of the Waiver for any reason +be judged legally invalid or ineffective under applicable law, then the +Waiver shall be preserved to the maximum extent permitted taking into +account Affirmer's express Statement of Purpose. In addition, to the +extent the Waiver is so judged Affirmer hereby grants to each affected +person a royalty-free, non transferable, non sublicensable, non exclusive, +irrevocable and unconditional license to exercise Affirmer's Copyright and +Related Rights in the Work (i) in all territories worldwide, (ii) for the +maximum duration provided by applicable law or treaty (including future +time extensions), (iii) in any current or future medium and for any number +of copies, and (iv) for any purpose whatsoever, including without +limitation commercial, advertising or promotional purposes (the +"License"). The License shall be deemed effective as of the date CC0 was +applied by Affirmer to the Work. Should any part of the License for any +reason be judged legally invalid or ineffective under applicable law, such +partial invalidity or ineffectiveness shall not invalidate the remainder +of the License, and in such case Affirmer hereby affirms that he or she +will not (i) exercise any of his or her remaining Copyright and Related +Rights in the Work or (ii) assert any associated claims and causes of +action with respect to the Work, in either case contrary to Affirmer's +express Statement of Purpose. + +4. Limitations and Disclaimers. + + a. No trademark or patent rights held by Affirmer are waived, abandoned, + surrendered, licensed or otherwise affected by this document. + b. Affirmer offers the Work as-is and makes no representations or + warranties of any kind concerning the Work, express, implied, + statutory or otherwise, including without limitation warranties of + title, merchantability, fitness for a particular purpose, non + infringement, or the absence of latent or other defects, accuracy, or + the present or absence of errors, whether or not discoverable, all to + the greatest extent permissible under applicable law. + c. Affirmer disclaims responsibility for clearing rights of other persons + that may apply to the Work or any use thereof, including without + limitation any person's Copyright and Related Rights in the Work. + Further, Affirmer disclaims responsibility for obtaining any necessary + consents, permissions or other rights required for any use of the + Work. + d. Affirmer understands and acknowledges that Creative Commons is not a + party to this document and has no duty or obligation with respect to + this CC0 or use of the Work. diff --git a/src/secp256k1/examples/ecdh.c b/src/secp256k1/examples/ecdh.c new file mode 100644 index 0000000000..d7e8add361 --- /dev/null +++ b/src/secp256k1/examples/ecdh.c @@ -0,0 +1,127 @@ +/************************************************************************* + * Written in 2020-2022 by Elichai Turkel * + * To the extent possible under law, the author(s) have dedicated all * + * copyright and related and neighboring rights to the software in this * + * file to the public domain worldwide. This software is distributed * + * without any warranty. For the CC0 Public Domain Dedication, see * + * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * + *************************************************************************/ + +#include <stdio.h> +#include <assert.h> +#include <string.h> + +#include <secp256k1.h> +#include <secp256k1_ecdh.h> + +#include "random.h" + + +int main(void) { + unsigned char seckey1[32]; + unsigned char seckey2[32]; + unsigned char compressed_pubkey1[33]; + unsigned char compressed_pubkey2[33]; + unsigned char shared_secret1[32]; + unsigned char shared_secret2[32]; + unsigned char randomize[32]; + int return_val; + size_t len; + secp256k1_pubkey pubkey1; + secp256k1_pubkey pubkey2; + + /* The specification in secp256k1.h states that `secp256k1_ec_pubkey_create` + * needs a context object initialized for signing, which is why we create + * a context with the SECP256K1_CONTEXT_SIGN flag. + * (The docs for `secp256k1_ecdh` don't require any special context, just + * some initialized context) */ + secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); + if (!fill_random(randomize, sizeof(randomize))) { + printf("Failed to generate randomness\n"); + return 1; + } + /* Randomizing the context is recommended to protect against side-channel + * leakage See `secp256k1_context_randomize` in secp256k1.h for more + * information about it. This should never fail. */ + return_val = secp256k1_context_randomize(ctx, randomize); + assert(return_val); + + /*** Key Generation ***/ + + /* If the secret key is zero or out of range (bigger than secp256k1's + * order), we try to sample a new key. Note that the probability of this + * happening is negligible. */ + while (1) { + if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) { + printf("Failed to generate randomness\n"); + return 1; + } + if (secp256k1_ec_seckey_verify(ctx, seckey1) && secp256k1_ec_seckey_verify(ctx, seckey2)) { + break; + } + } + + /* Public key creation using a valid context with a verified secret key should never fail */ + return_val = secp256k1_ec_pubkey_create(ctx, &pubkey1, seckey1); + assert(return_val); + return_val = secp256k1_ec_pubkey_create(ctx, &pubkey2, seckey2); + assert(return_val); + + /* Serialize pubkey1 in a compressed form (33 bytes), should always return 1 */ + len = sizeof(compressed_pubkey1); + return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey1, &len, &pubkey1, SECP256K1_EC_COMPRESSED); + assert(return_val); + /* Should be the same size as the size of the output, because we passed a 33 byte array. */ + assert(len == sizeof(compressed_pubkey1)); + + /* Serialize pubkey2 in a compressed form (33 bytes) */ + len = sizeof(compressed_pubkey2); + return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey2, &len, &pubkey2, SECP256K1_EC_COMPRESSED); + assert(return_val); + /* Should be the same size as the size of the output, because we passed a 33 byte array. */ + assert(len == sizeof(compressed_pubkey2)); + + /*** Creating the shared secret ***/ + + /* Perform ECDH with seckey1 and pubkey2. Should never fail with a verified + * seckey and valid pubkey */ + return_val = secp256k1_ecdh(ctx, shared_secret1, &pubkey2, seckey1, NULL, NULL); + assert(return_val); + + /* Perform ECDH with seckey2 and pubkey1. Should never fail with a verified + * seckey and valid pubkey */ + return_val = secp256k1_ecdh(ctx, shared_secret2, &pubkey1, seckey2, NULL, NULL); + assert(return_val); + + /* Both parties should end up with the same shared secret */ + return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1)); + assert(return_val == 0); + + printf("Secret Key1: "); + print_hex(seckey1, sizeof(seckey1)); + printf("Compressed Pubkey1: "); + print_hex(compressed_pubkey1, sizeof(compressed_pubkey1)); + printf("\nSecret Key2: "); + print_hex(seckey2, sizeof(seckey2)); + printf("Compressed Pubkey2: "); + print_hex(compressed_pubkey2, sizeof(compressed_pubkey2)); + printf("\nShared Secret: "); + print_hex(shared_secret1, sizeof(shared_secret1)); + + /* This will clear everything from the context and free the memory */ + secp256k1_context_destroy(ctx); + + /* It's best practice to try to clear secrets from memory after using them. + * This is done because some bugs can allow an attacker to leak memory, for + * example through "out of bounds" array access (see Heartbleed), Or the OS + * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. + * + * TODO: Prevent these writes from being optimized out, as any good compiler + * will remove any writes that aren't used. */ + memset(seckey1, 0, sizeof(seckey1)); + memset(seckey2, 0, sizeof(seckey2)); + memset(shared_secret1, 0, sizeof(shared_secret1)); + memset(shared_secret2, 0, sizeof(shared_secret2)); + + return 0; +} diff --git a/src/secp256k1/examples/ecdsa.c b/src/secp256k1/examples/ecdsa.c new file mode 100644 index 0000000000..434c856ba0 --- /dev/null +++ b/src/secp256k1/examples/ecdsa.c @@ -0,0 +1,137 @@ +/************************************************************************* + * Written in 2020-2022 by Elichai Turkel * + * To the extent possible under law, the author(s) have dedicated all * + * copyright and related and neighboring rights to the software in this * + * file to the public domain worldwide. This software is distributed * + * without any warranty. For the CC0 Public Domain Dedication, see * + * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * + *************************************************************************/ + +#include <stdio.h> +#include <assert.h> +#include <string.h> + +#include <secp256k1.h> + +#include "random.h" + + + +int main(void) { + /* Instead of signing the message directly, we must sign a 32-byte hash. + * Here the message is "Hello, world!" and the hash function was SHA-256. + * An actual implementation should just call SHA-256, but this example + * hardcodes the output to avoid depending on an additional library. + * See https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116 */ + unsigned char msg_hash[32] = { + 0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4, + 0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64, + 0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34, + 0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3, + }; + unsigned char seckey[32]; + unsigned char randomize[32]; + unsigned char compressed_pubkey[33]; + unsigned char serialized_signature[64]; + size_t len; + int is_signature_valid; + int return_val; + secp256k1_pubkey pubkey; + secp256k1_ecdsa_signature sig; + /* The specification in secp256k1.h states that `secp256k1_ec_pubkey_create` needs + * a context object initialized for signing and `secp256k1_ecdsa_verify` needs + * a context initialized for verification, which is why we create a context + * for both signing and verification with the SECP256K1_CONTEXT_SIGN and + * SECP256K1_CONTEXT_VERIFY flags. */ + secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + if (!fill_random(randomize, sizeof(randomize))) { + printf("Failed to generate randomness\n"); + return 1; + } + /* Randomizing the context is recommended to protect against side-channel + * leakage See `secp256k1_context_randomize` in secp256k1.h for more + * information about it. This should never fail. */ + return_val = secp256k1_context_randomize(ctx, randomize); + assert(return_val); + + /*** Key Generation ***/ + + /* If the secret key is zero or out of range (bigger than secp256k1's + * order), we try to sample a new key. Note that the probability of this + * happening is negligible. */ + while (1) { + if (!fill_random(seckey, sizeof(seckey))) { + printf("Failed to generate randomness\n"); + return 1; + } + if (secp256k1_ec_seckey_verify(ctx, seckey)) { + break; + } + } + + /* Public key creation using a valid context with a verified secret key should never fail */ + return_val = secp256k1_ec_pubkey_create(ctx, &pubkey, seckey); + assert(return_val); + + /* Serialize the pubkey in a compressed form(33 bytes). Should always return 1. */ + len = sizeof(compressed_pubkey); + return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey, &len, &pubkey, SECP256K1_EC_COMPRESSED); + assert(return_val); + /* Should be the same size as the size of the output, because we passed a 33 byte array. */ + assert(len == sizeof(compressed_pubkey)); + + /*** Signing ***/ + + /* Generate an ECDSA signature `noncefp` and `ndata` allows you to pass a + * custom nonce function, passing `NULL` will use the RFC-6979 safe default. + * Signing with a valid context, verified secret key + * and the default nonce function should never fail. */ + return_val = secp256k1_ecdsa_sign(ctx, &sig, msg_hash, seckey, NULL, NULL); + assert(return_val); + + /* Serialize the signature in a compact form. Should always return 1 + * according to the documentation in secp256k1.h. */ + return_val = secp256k1_ecdsa_signature_serialize_compact(ctx, serialized_signature, &sig); + assert(return_val); + + + /*** Verification ***/ + + /* Deserialize the signature. This will return 0 if the signature can't be parsed correctly. */ + if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, serialized_signature)) { + printf("Failed parsing the signature\n"); + return 1; + } + + /* Deserialize the public key. This will return 0 if the public key can't be parsed correctly. */ + if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) { + printf("Failed parsing the public key\n"); + return 1; + } + + /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */ + is_signature_valid = secp256k1_ecdsa_verify(ctx, &sig, msg_hash, &pubkey); + + printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false"); + printf("Secret Key: "); + print_hex(seckey, sizeof(seckey)); + printf("Public Key: "); + print_hex(compressed_pubkey, sizeof(compressed_pubkey)); + printf("Signature: "); + print_hex(serialized_signature, sizeof(serialized_signature)); + + + /* This will clear everything from the context and free the memory */ + secp256k1_context_destroy(ctx); + + /* It's best practice to try to clear secrets from memory after using them. + * This is done because some bugs can allow an attacker to leak memory, for + * example through "out of bounds" array access (see Heartbleed), Or the OS + * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. + * + * TODO: Prevent these writes from being optimized out, as any good compiler + * will remove any writes that aren't used. */ + memset(seckey, 0, sizeof(seckey)); + + return 0; +} diff --git a/src/secp256k1/examples/random.h b/src/secp256k1/examples/random.h new file mode 100644 index 0000000000..439226f09f --- /dev/null +++ b/src/secp256k1/examples/random.h @@ -0,0 +1,73 @@ +/************************************************************************* + * Copyright (c) 2020-2021 Elichai Turkel * + * Distributed under the CC0 software license, see the accompanying file * + * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * + *************************************************************************/ + +/* + * This file is an attempt at collecting best practice methods for obtaining randomness with different operating systems. + * It may be out-of-date. Consult the documentation of the operating system before considering to use the methods below. + * + * Platform randomness sources: + * Linux -> `getrandom(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. http://man7.org/linux/man-pages/man2/getrandom.2.html, https://linux.die.net/man/4/urandom + * macOS -> `getentropy(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. https://www.unix.com/man-page/mojave/2/getentropy, https://opensource.apple.com/source/xnu/xnu-517.12.7/bsd/man/man4/random.4.auto.html + * FreeBSD -> `getrandom(2)`(`sys/random.h`), if not available `kern.arandom` should be used. https://www.freebsd.org/cgi/man.cgi?query=getrandom, https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4 + * OpenBSD -> `getentropy(2)`(`unistd.h`), if not available `/dev/urandom` should be used. https://man.openbsd.org/getentropy, https://man.openbsd.org/urandom + * Windows -> `BCryptGenRandom`(`bcrypt.h`). https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom + */ + +#if defined(_WIN32) +#include <windows.h> +#include <ntstatus.h> +#include <bcrypt.h> +#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) +#include <sys/random.h> +#elif defined(__OpenBSD__) +#include <unistd.h> +#else +#error "Couldn't identify the OS" +#endif + +#include <stddef.h> +#include <limits.h> +#include <stdio.h> + + +/* Returns 1 on success, and 0 on failure. */ +static int fill_random(unsigned char* data, size_t size) { +#if defined(_WIN32) + NTSTATUS res = BCryptGenRandom(NULL, data, size, BCRYPT_USE_SYSTEM_PREFERRED_RNG); + if (res != STATUS_SUCCESS || size > ULONG_MAX) { + return 0; + } else { + return 1; + } +#elif defined(__linux__) || defined(__FreeBSD__) + /* If `getrandom(2)` is not available you should fallback to /dev/urandom */ + ssize_t res = getrandom(data, size, 0); + if (res < 0 || (size_t)res != size ) { + return 0; + } else { + return 1; + } +#elif defined(__APPLE__) || defined(__OpenBSD__) + /* If `getentropy(2)` is not available you should fallback to either + * `SecRandomCopyBytes` or /dev/urandom */ + int res = getentropy(data, size); + if (res == 0) { + return 1; + } else { + return 0; + } +#endif + return 0; +} + +static void print_hex(unsigned char* data, size_t size) { + size_t i; + printf("0x"); + for (i = 0; i < size; i++) { + printf("%02x", data[i]); + } + printf("\n"); +} diff --git a/src/secp256k1/examples/schnorr.c b/src/secp256k1/examples/schnorr.c new file mode 100644 index 0000000000..82eb07d5d7 --- /dev/null +++ b/src/secp256k1/examples/schnorr.c @@ -0,0 +1,152 @@ +/************************************************************************* + * Written in 2020-2022 by Elichai Turkel * + * To the extent possible under law, the author(s) have dedicated all * + * copyright and related and neighboring rights to the software in this * + * file to the public domain worldwide. This software is distributed * + * without any warranty. For the CC0 Public Domain Dedication, see * + * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * + *************************************************************************/ + +#include <stdio.h> +#include <assert.h> +#include <string.h> + +#include <secp256k1.h> +#include <secp256k1_extrakeys.h> +#include <secp256k1_schnorrsig.h> + +#include "random.h" + +int main(void) { + unsigned char msg[12] = "Hello World!"; + unsigned char msg_hash[32]; + unsigned char tag[17] = "my_fancy_protocol"; + unsigned char seckey[32]; + unsigned char randomize[32]; + unsigned char auxiliary_rand[32]; + unsigned char serialized_pubkey[32]; + unsigned char signature[64]; + int is_signature_valid; + int return_val; + secp256k1_xonly_pubkey pubkey; + secp256k1_keypair keypair; + /* The specification in secp256k1_extrakeys.h states that `secp256k1_keypair_create` + * needs a context object initialized for signing. And in secp256k1_schnorrsig.h + * they state that `secp256k1_schnorrsig_verify` needs a context initialized for + * verification, which is why we create a context for both signing and verification + * with the SECP256K1_CONTEXT_SIGN and SECP256K1_CONTEXT_VERIFY flags. */ + secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + if (!fill_random(randomize, sizeof(randomize))) { + printf("Failed to generate randomness\n"); + return 1; + } + /* Randomizing the context is recommended to protect against side-channel + * leakage See `secp256k1_context_randomize` in secp256k1.h for more + * information about it. This should never fail. */ + return_val = secp256k1_context_randomize(ctx, randomize); + assert(return_val); + + /*** Key Generation ***/ + + /* If the secret key is zero or out of range (bigger than secp256k1's + * order), we try to sample a new key. Note that the probability of this + * happening is negligible. */ + while (1) { + if (!fill_random(seckey, sizeof(seckey))) { + printf("Failed to generate randomness\n"); + return 1; + } + /* Try to create a keypair with a valid context, it should only fail if + * the secret key is zero or out of range. */ + if (secp256k1_keypair_create(ctx, &keypair, seckey)) { + break; + } + } + + /* Extract the X-only public key from the keypair. We pass NULL for + * `pk_parity` as the parity isn't needed for signing or verification. + * `secp256k1_keypair_xonly_pub` supports returning the parity for + * other use cases such as tests or verifying Taproot tweaks. + * This should never fail with a valid context and public key. */ + return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair); + assert(return_val); + + /* Serialize the public key. Should always return 1 for a valid public key. */ + return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey); + assert(return_val); + + /*** Signing ***/ + + /* Instead of signing (possibly very long) messages directly, we sign a + * 32-byte hash of the message in this example. + * + * We use secp256k1_tagged_sha256 to create this hash. This function expects + * a context-specific "tag", which restricts the context in which the signed + * messages should be considered valid. For example, if protocol A mandates + * to use the tag "my_fancy_protocol" and protocol B mandates to use the tag + * "my_boring_protocol", then signed messages from protocol A will never be + * valid in protocol B (and vice versa), even if keys are reused across + * protocols. This implements "domain separation", which is considered good + * practice. It avoids attacks in which users are tricked into signing a + * message that has intended consequences in the intended context (e.g., + * protocol A) but would have unintended consequences if it were valid in + * some other context (e.g., protocol B). */ + return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg)); + assert(return_val); + + /* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */ + if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) { + printf("Failed to generate randomness\n"); + return 1; + } + + /* Generate a Schnorr signature. + * + * We use the secp256k1_schnorrsig_sign32 function that provides a simple + * interface for signing 32-byte messages (which in our case is a hash of + * the actual message). BIP-340 recommends passing 32 bytes of randomness + * to the signing function to improve security against side-channel attacks. + * Signing with a valid context, a 32-byte message, a verified keypair, and + * any 32 bytes of auxiliary random data should never fail. */ + return_val = secp256k1_schnorrsig_sign32(ctx, signature, msg_hash, &keypair, auxiliary_rand); + assert(return_val); + + /*** Verification ***/ + + /* Deserialize the public key. This will return 0 if the public key can't + * be parsed correctly */ + if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) { + printf("Failed parsing the public key\n"); + return 1; + } + + /* Compute the tagged hash on the received messages using the same tag as the signer. */ + return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg)); + assert(return_val); + + /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */ + is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey); + + + printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false"); + printf("Secret Key: "); + print_hex(seckey, sizeof(seckey)); + printf("Public Key: "); + print_hex(serialized_pubkey, sizeof(serialized_pubkey)); + printf("Signature: "); + print_hex(signature, sizeof(signature)); + + /* This will clear everything from the context and free the memory */ + secp256k1_context_destroy(ctx); + + /* It's best practice to try to clear secrets from memory after using them. + * This is done because some bugs can allow an attacker to leak memory, for + * example through "out of bounds" array access (see Heartbleed), Or the OS + * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. + * + * TODO: Prevent these writes from being optimized out, as any good compiler + * will remove any writes that aren't used. */ + memset(seckey, 0, sizeof(seckey)); + + return 0; +} |