aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/examples/schnorr.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/secp256k1/examples/schnorr.c')
-rw-r--r--src/secp256k1/examples/schnorr.c152
1 files changed, 152 insertions, 0 deletions
diff --git a/src/secp256k1/examples/schnorr.c b/src/secp256k1/examples/schnorr.c
new file mode 100644
index 0000000000..82eb07d5d7
--- /dev/null
+++ b/src/secp256k1/examples/schnorr.c
@@ -0,0 +1,152 @@
+/*************************************************************************
+ * Written in 2020-2022 by Elichai Turkel *
+ * To the extent possible under law, the author(s) have dedicated all *
+ * copyright and related and neighboring rights to the software in this *
+ * file to the public domain worldwide. This software is distributed *
+ * without any warranty. For the CC0 Public Domain Dedication, see *
+ * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
+ *************************************************************************/
+
+#include <stdio.h>
+#include <assert.h>
+#include <string.h>
+
+#include <secp256k1.h>
+#include <secp256k1_extrakeys.h>
+#include <secp256k1_schnorrsig.h>
+
+#include "random.h"
+
+int main(void) {
+ unsigned char msg[12] = "Hello World!";
+ unsigned char msg_hash[32];
+ unsigned char tag[17] = "my_fancy_protocol";
+ unsigned char seckey[32];
+ unsigned char randomize[32];
+ unsigned char auxiliary_rand[32];
+ unsigned char serialized_pubkey[32];
+ unsigned char signature[64];
+ int is_signature_valid;
+ int return_val;
+ secp256k1_xonly_pubkey pubkey;
+ secp256k1_keypair keypair;
+ /* The specification in secp256k1_extrakeys.h states that `secp256k1_keypair_create`
+ * needs a context object initialized for signing. And in secp256k1_schnorrsig.h
+ * they state that `secp256k1_schnorrsig_verify` needs a context initialized for
+ * verification, which is why we create a context for both signing and verification
+ * with the SECP256K1_CONTEXT_SIGN and SECP256K1_CONTEXT_VERIFY flags. */
+ secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+ if (!fill_random(randomize, sizeof(randomize))) {
+ printf("Failed to generate randomness\n");
+ return 1;
+ }
+ /* Randomizing the context is recommended to protect against side-channel
+ * leakage See `secp256k1_context_randomize` in secp256k1.h for more
+ * information about it. This should never fail. */
+ return_val = secp256k1_context_randomize(ctx, randomize);
+ assert(return_val);
+
+ /*** Key Generation ***/
+
+ /* If the secret key is zero or out of range (bigger than secp256k1's
+ * order), we try to sample a new key. Note that the probability of this
+ * happening is negligible. */
+ while (1) {
+ if (!fill_random(seckey, sizeof(seckey))) {
+ printf("Failed to generate randomness\n");
+ return 1;
+ }
+ /* Try to create a keypair with a valid context, it should only fail if
+ * the secret key is zero or out of range. */
+ if (secp256k1_keypair_create(ctx, &keypair, seckey)) {
+ break;
+ }
+ }
+
+ /* Extract the X-only public key from the keypair. We pass NULL for
+ * `pk_parity` as the parity isn't needed for signing or verification.
+ * `secp256k1_keypair_xonly_pub` supports returning the parity for
+ * other use cases such as tests or verifying Taproot tweaks.
+ * This should never fail with a valid context and public key. */
+ return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair);
+ assert(return_val);
+
+ /* Serialize the public key. Should always return 1 for a valid public key. */
+ return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey);
+ assert(return_val);
+
+ /*** Signing ***/
+
+ /* Instead of signing (possibly very long) messages directly, we sign a
+ * 32-byte hash of the message in this example.
+ *
+ * We use secp256k1_tagged_sha256 to create this hash. This function expects
+ * a context-specific "tag", which restricts the context in which the signed
+ * messages should be considered valid. For example, if protocol A mandates
+ * to use the tag "my_fancy_protocol" and protocol B mandates to use the tag
+ * "my_boring_protocol", then signed messages from protocol A will never be
+ * valid in protocol B (and vice versa), even if keys are reused across
+ * protocols. This implements "domain separation", which is considered good
+ * practice. It avoids attacks in which users are tricked into signing a
+ * message that has intended consequences in the intended context (e.g.,
+ * protocol A) but would have unintended consequences if it were valid in
+ * some other context (e.g., protocol B). */
+ return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg));
+ assert(return_val);
+
+ /* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */
+ if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) {
+ printf("Failed to generate randomness\n");
+ return 1;
+ }
+
+ /* Generate a Schnorr signature.
+ *
+ * We use the secp256k1_schnorrsig_sign32 function that provides a simple
+ * interface for signing 32-byte messages (which in our case is a hash of
+ * the actual message). BIP-340 recommends passing 32 bytes of randomness
+ * to the signing function to improve security against side-channel attacks.
+ * Signing with a valid context, a 32-byte message, a verified keypair, and
+ * any 32 bytes of auxiliary random data should never fail. */
+ return_val = secp256k1_schnorrsig_sign32(ctx, signature, msg_hash, &keypair, auxiliary_rand);
+ assert(return_val);
+
+ /*** Verification ***/
+
+ /* Deserialize the public key. This will return 0 if the public key can't
+ * be parsed correctly */
+ if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) {
+ printf("Failed parsing the public key\n");
+ return 1;
+ }
+
+ /* Compute the tagged hash on the received messages using the same tag as the signer. */
+ return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg));
+ assert(return_val);
+
+ /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
+ is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey);
+
+
+ printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
+ printf("Secret Key: ");
+ print_hex(seckey, sizeof(seckey));
+ printf("Public Key: ");
+ print_hex(serialized_pubkey, sizeof(serialized_pubkey));
+ printf("Signature: ");
+ print_hex(signature, sizeof(signature));
+
+ /* This will clear everything from the context and free the memory */
+ secp256k1_context_destroy(ctx);
+
+ /* It's best practice to try to clear secrets from memory after using them.
+ * This is done because some bugs can allow an attacker to leak memory, for
+ * example through "out of bounds" array access (see Heartbleed), Or the OS
+ * swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
+ *
+ * TODO: Prevent these writes from being optimized out, as any good compiler
+ * will remove any writes that aren't used. */
+ memset(seckey, 0, sizeof(seckey));
+
+ return 0;
+}