diff options
Diffstat (limited to 'src/secp256k1/examples/schnorr.c')
-rw-r--r-- | src/secp256k1/examples/schnorr.c | 152 |
1 files changed, 152 insertions, 0 deletions
diff --git a/src/secp256k1/examples/schnorr.c b/src/secp256k1/examples/schnorr.c new file mode 100644 index 0000000000..82eb07d5d7 --- /dev/null +++ b/src/secp256k1/examples/schnorr.c @@ -0,0 +1,152 @@ +/************************************************************************* + * Written in 2020-2022 by Elichai Turkel * + * To the extent possible under law, the author(s) have dedicated all * + * copyright and related and neighboring rights to the software in this * + * file to the public domain worldwide. This software is distributed * + * without any warranty. For the CC0 Public Domain Dedication, see * + * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * + *************************************************************************/ + +#include <stdio.h> +#include <assert.h> +#include <string.h> + +#include <secp256k1.h> +#include <secp256k1_extrakeys.h> +#include <secp256k1_schnorrsig.h> + +#include "random.h" + +int main(void) { + unsigned char msg[12] = "Hello World!"; + unsigned char msg_hash[32]; + unsigned char tag[17] = "my_fancy_protocol"; + unsigned char seckey[32]; + unsigned char randomize[32]; + unsigned char auxiliary_rand[32]; + unsigned char serialized_pubkey[32]; + unsigned char signature[64]; + int is_signature_valid; + int return_val; + secp256k1_xonly_pubkey pubkey; + secp256k1_keypair keypair; + /* The specification in secp256k1_extrakeys.h states that `secp256k1_keypair_create` + * needs a context object initialized for signing. And in secp256k1_schnorrsig.h + * they state that `secp256k1_schnorrsig_verify` needs a context initialized for + * verification, which is why we create a context for both signing and verification + * with the SECP256K1_CONTEXT_SIGN and SECP256K1_CONTEXT_VERIFY flags. */ + secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + if (!fill_random(randomize, sizeof(randomize))) { + printf("Failed to generate randomness\n"); + return 1; + } + /* Randomizing the context is recommended to protect against side-channel + * leakage See `secp256k1_context_randomize` in secp256k1.h for more + * information about it. This should never fail. */ + return_val = secp256k1_context_randomize(ctx, randomize); + assert(return_val); + + /*** Key Generation ***/ + + /* If the secret key is zero or out of range (bigger than secp256k1's + * order), we try to sample a new key. Note that the probability of this + * happening is negligible. */ + while (1) { + if (!fill_random(seckey, sizeof(seckey))) { + printf("Failed to generate randomness\n"); + return 1; + } + /* Try to create a keypair with a valid context, it should only fail if + * the secret key is zero or out of range. */ + if (secp256k1_keypair_create(ctx, &keypair, seckey)) { + break; + } + } + + /* Extract the X-only public key from the keypair. We pass NULL for + * `pk_parity` as the parity isn't needed for signing or verification. + * `secp256k1_keypair_xonly_pub` supports returning the parity for + * other use cases such as tests or verifying Taproot tweaks. + * This should never fail with a valid context and public key. */ + return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair); + assert(return_val); + + /* Serialize the public key. Should always return 1 for a valid public key. */ + return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey); + assert(return_val); + + /*** Signing ***/ + + /* Instead of signing (possibly very long) messages directly, we sign a + * 32-byte hash of the message in this example. + * + * We use secp256k1_tagged_sha256 to create this hash. This function expects + * a context-specific "tag", which restricts the context in which the signed + * messages should be considered valid. For example, if protocol A mandates + * to use the tag "my_fancy_protocol" and protocol B mandates to use the tag + * "my_boring_protocol", then signed messages from protocol A will never be + * valid in protocol B (and vice versa), even if keys are reused across + * protocols. This implements "domain separation", which is considered good + * practice. It avoids attacks in which users are tricked into signing a + * message that has intended consequences in the intended context (e.g., + * protocol A) but would have unintended consequences if it were valid in + * some other context (e.g., protocol B). */ + return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg)); + assert(return_val); + + /* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */ + if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) { + printf("Failed to generate randomness\n"); + return 1; + } + + /* Generate a Schnorr signature. + * + * We use the secp256k1_schnorrsig_sign32 function that provides a simple + * interface for signing 32-byte messages (which in our case is a hash of + * the actual message). BIP-340 recommends passing 32 bytes of randomness + * to the signing function to improve security against side-channel attacks. + * Signing with a valid context, a 32-byte message, a verified keypair, and + * any 32 bytes of auxiliary random data should never fail. */ + return_val = secp256k1_schnorrsig_sign32(ctx, signature, msg_hash, &keypair, auxiliary_rand); + assert(return_val); + + /*** Verification ***/ + + /* Deserialize the public key. This will return 0 if the public key can't + * be parsed correctly */ + if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) { + printf("Failed parsing the public key\n"); + return 1; + } + + /* Compute the tagged hash on the received messages using the same tag as the signer. */ + return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg)); + assert(return_val); + + /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */ + is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey); + + + printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false"); + printf("Secret Key: "); + print_hex(seckey, sizeof(seckey)); + printf("Public Key: "); + print_hex(serialized_pubkey, sizeof(serialized_pubkey)); + printf("Signature: "); + print_hex(signature, sizeof(signature)); + + /* This will clear everything from the context and free the memory */ + secp256k1_context_destroy(ctx); + + /* It's best practice to try to clear secrets from memory after using them. + * This is done because some bugs can allow an attacker to leak memory, for + * example through "out of bounds" array access (see Heartbleed), Or the OS + * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. + * + * TODO: Prevent these writes from being optimized out, as any good compiler + * will remove any writes that aren't used. */ + memset(seckey, 0, sizeof(seckey)); + + return 0; +} |