aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/examples/ecdsa.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/secp256k1/examples/ecdsa.c')
-rw-r--r--src/secp256k1/examples/ecdsa.c139
1 files changed, 139 insertions, 0 deletions
diff --git a/src/secp256k1/examples/ecdsa.c b/src/secp256k1/examples/ecdsa.c
new file mode 100644
index 0000000000..d1d2b0e365
--- /dev/null
+++ b/src/secp256k1/examples/ecdsa.c
@@ -0,0 +1,139 @@
+/*************************************************************************
+ * Written in 2020-2022 by Elichai Turkel *
+ * To the extent possible under law, the author(s) have dedicated all *
+ * copyright and related and neighboring rights to the software in this *
+ * file to the public domain worldwide. This software is distributed *
+ * without any warranty. For the CC0 Public Domain Dedication, see *
+ * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
+ *************************************************************************/
+
+#include <stdio.h>
+#include <assert.h>
+#include <string.h>
+
+#include <secp256k1.h>
+
+#include "examples_util.h"
+
+int main(void) {
+ /* Instead of signing the message directly, we must sign a 32-byte hash.
+ * Here the message is "Hello, world!" and the hash function was SHA-256.
+ * An actual implementation should just call SHA-256, but this example
+ * hardcodes the output to avoid depending on an additional library.
+ * See https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116 */
+ unsigned char msg_hash[32] = {
+ 0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4,
+ 0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64,
+ 0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34,
+ 0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3,
+ };
+ unsigned char seckey[32];
+ unsigned char randomize[32];
+ unsigned char compressed_pubkey[33];
+ unsigned char serialized_signature[64];
+ size_t len;
+ int is_signature_valid, is_signature_valid2;
+ int return_val;
+ secp256k1_pubkey pubkey;
+ secp256k1_ecdsa_signature sig;
+ /* Before we can call actual API functions, we need to create a "context". */
+ secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
+ if (!fill_random(randomize, sizeof(randomize))) {
+ printf("Failed to generate randomness\n");
+ return 1;
+ }
+ /* Randomizing the context is recommended to protect against side-channel
+ * leakage See `secp256k1_context_randomize` in secp256k1.h for more
+ * information about it. This should never fail. */
+ return_val = secp256k1_context_randomize(ctx, randomize);
+ assert(return_val);
+
+ /*** Key Generation ***/
+
+ /* If the secret key is zero or out of range (bigger than secp256k1's
+ * order), we try to sample a new key. Note that the probability of this
+ * happening is negligible. */
+ while (1) {
+ if (!fill_random(seckey, sizeof(seckey))) {
+ printf("Failed to generate randomness\n");
+ return 1;
+ }
+ if (secp256k1_ec_seckey_verify(ctx, seckey)) {
+ break;
+ }
+ }
+
+ /* Public key creation using a valid context with a verified secret key should never fail */
+ return_val = secp256k1_ec_pubkey_create(ctx, &pubkey, seckey);
+ assert(return_val);
+
+ /* Serialize the pubkey in a compressed form(33 bytes). Should always return 1. */
+ len = sizeof(compressed_pubkey);
+ return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey, &len, &pubkey, SECP256K1_EC_COMPRESSED);
+ assert(return_val);
+ /* Should be the same size as the size of the output, because we passed a 33 byte array. */
+ assert(len == sizeof(compressed_pubkey));
+
+ /*** Signing ***/
+
+ /* Generate an ECDSA signature `noncefp` and `ndata` allows you to pass a
+ * custom nonce function, passing `NULL` will use the RFC-6979 safe default.
+ * Signing with a valid context, verified secret key
+ * and the default nonce function should never fail. */
+ return_val = secp256k1_ecdsa_sign(ctx, &sig, msg_hash, seckey, NULL, NULL);
+ assert(return_val);
+
+ /* Serialize the signature in a compact form. Should always return 1
+ * according to the documentation in secp256k1.h. */
+ return_val = secp256k1_ecdsa_signature_serialize_compact(ctx, serialized_signature, &sig);
+ assert(return_val);
+
+
+ /*** Verification ***/
+
+ /* Deserialize the signature. This will return 0 if the signature can't be parsed correctly. */
+ if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, serialized_signature)) {
+ printf("Failed parsing the signature\n");
+ return 1;
+ }
+
+ /* Deserialize the public key. This will return 0 if the public key can't be parsed correctly. */
+ if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) {
+ printf("Failed parsing the public key\n");
+ return 1;
+ }
+
+ /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
+ is_signature_valid = secp256k1_ecdsa_verify(ctx, &sig, msg_hash, &pubkey);
+
+ printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
+ printf("Secret Key: ");
+ print_hex(seckey, sizeof(seckey));
+ printf("Public Key: ");
+ print_hex(compressed_pubkey, sizeof(compressed_pubkey));
+ printf("Signature: ");
+ print_hex(serialized_signature, sizeof(serialized_signature));
+
+ /* This will clear everything from the context and free the memory */
+ secp256k1_context_destroy(ctx);
+
+ /* Bonus example: if all we need is signature verification (and no key
+ generation or signing), we don't need to use a context created via
+ secp256k1_context_create(). We can simply use the static (i.e., global)
+ context secp256k1_context_static. See its description in
+ include/secp256k1.h for details. */
+ is_signature_valid2 = secp256k1_ecdsa_verify(secp256k1_context_static,
+ &sig, msg_hash, &pubkey);
+ assert(is_signature_valid2 == is_signature_valid);
+
+ /* It's best practice to try to clear secrets from memory after using them.
+ * This is done because some bugs can allow an attacker to leak memory, for
+ * example through "out of bounds" array access (see Heartbleed), Or the OS
+ * swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
+ *
+ * Here we are preventing these writes from being optimized out, as any good compiler
+ * will remove any writes that aren't used. */
+ secure_erase(seckey, sizeof(seckey));
+
+ return 0;
+}