diff options
Diffstat (limited to 'src/script/standard.cpp')
-rw-r--r-- | src/script/standard.cpp | 198 |
1 files changed, 195 insertions, 3 deletions
diff --git a/src/script/standard.cpp b/src/script/standard.cpp index a4b11cc0a9..b8349bb9ab 100644 --- a/src/script/standard.cpp +++ b/src/script/standard.cpp @@ -377,6 +377,16 @@ bool IsValidDestination(const CTxDestination& dest) { /*static*/ TaprootBuilder::NodeInfo TaprootBuilder::Combine(NodeInfo&& a, NodeInfo&& b) { NodeInfo ret; + /* Iterate over all tracked leaves in a, add b's hash to their Merkle branch, and move them to ret. */ + for (auto& leaf : a.leaves) { + leaf.merkle_branch.push_back(b.hash); + ret.leaves.emplace_back(std::move(leaf)); + } + /* Iterate over all tracked leaves in b, add a's hash to their Merkle branch, and move them to ret. */ + for (auto& leaf : b.leaves) { + leaf.merkle_branch.push_back(a.hash); + ret.leaves.emplace_back(std::move(leaf)); + } /* Lexicographically sort a and b's hash, and compute parent hash. */ if (a.hash < b.hash) { ret.hash = (CHashWriter(HASHER_TAPBRANCH) << a.hash << b.hash).GetSHA256(); @@ -386,6 +396,27 @@ bool IsValidDestination(const CTxDestination& dest) { return ret; } +void TaprootSpendData::Merge(TaprootSpendData other) +{ + // TODO: figure out how to better deal with conflicting information + // being merged. + if (internal_key.IsNull() && !other.internal_key.IsNull()) { + internal_key = other.internal_key; + } + if (merkle_root.IsNull() && !other.merkle_root.IsNull()) { + merkle_root = other.merkle_root; + } + for (auto& [key, control_blocks] : other.scripts) { + // Once P0083R3 is supported by all our targeted platforms, + // this loop body can be replaced with: + // scripts[key].merge(std::move(control_blocks)); + auto& target = scripts[key]; + for (auto& control_block: control_blocks) { + target.insert(std::move(control_block)); + } + } +} + void TaprootBuilder::Insert(TaprootBuilder::NodeInfo&& node, int depth) { assert(depth >= 0 && (size_t)depth <= TAPROOT_CONTROL_MAX_NODE_COUNT); @@ -435,13 +466,14 @@ void TaprootBuilder::Insert(TaprootBuilder::NodeInfo&& node, int depth) return branch.size() == 0 || (branch.size() == 1 && branch[0]); } -TaprootBuilder& TaprootBuilder::Add(int depth, const CScript& script, int leaf_version) +TaprootBuilder& TaprootBuilder::Add(int depth, const CScript& script, int leaf_version, bool track) { assert((leaf_version & ~TAPROOT_LEAF_MASK) == 0); if (!IsValid()) return *this; - /* Construct NodeInfo object with leaf hash. */ + /* Construct NodeInfo object with leaf hash and (if track is true) also leaf information. */ NodeInfo node; node.hash = (CHashWriter{HASHER_TAPLEAF} << uint8_t(leaf_version) << script).GetSHA256(); + if (track) node.leaves.emplace_back(LeafInfo{script, leaf_version, {}}); /* Insert into the branch. */ Insert(std::move(node), depth); return *this; @@ -464,8 +496,168 @@ TaprootBuilder& TaprootBuilder::Finalize(const XOnlyPubKey& internal_key) m_internal_key = internal_key; auto ret = m_internal_key.CreateTapTweak(m_branch.size() == 0 ? nullptr : &m_branch[0]->hash); assert(ret.has_value()); - std::tie(m_output_key, std::ignore) = *ret; + std::tie(m_output_key, m_parity) = *ret; return *this; } WitnessV1Taproot TaprootBuilder::GetOutput() { return WitnessV1Taproot{m_output_key}; } + +TaprootSpendData TaprootBuilder::GetSpendData() const +{ + TaprootSpendData spd; + spd.merkle_root = m_branch.size() == 0 ? uint256() : m_branch[0]->hash; + spd.internal_key = m_internal_key; + if (m_branch.size()) { + // If any script paths exist, they have been combined into the root m_branch[0] + // by now. Compute the control block for each of its tracked leaves, and put them in + // spd.scripts. + for (const auto& leaf : m_branch[0]->leaves) { + std::vector<unsigned char> control_block; + control_block.resize(TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size()); + control_block[0] = leaf.leaf_version | (m_parity ? 1 : 0); + std::copy(m_internal_key.begin(), m_internal_key.end(), control_block.begin() + 1); + if (leaf.merkle_branch.size()) { + std::copy(leaf.merkle_branch[0].begin(), + leaf.merkle_branch[0].begin() + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size(), + control_block.begin() + TAPROOT_CONTROL_BASE_SIZE); + } + spd.scripts[{leaf.script, leaf.leaf_version}].insert(std::move(control_block)); + } + } + return spd; +} + +std::optional<std::vector<std::tuple<int, CScript, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output) +{ + // Verify that the output matches the assumed Merkle root and internal key. + auto tweak = spenddata.internal_key.CreateTapTweak(spenddata.merkle_root.IsNull() ? nullptr : &spenddata.merkle_root); + if (!tweak || tweak->first != output) return std::nullopt; + // If the Merkle root is 0, the tree is empty, and we're done. + std::vector<std::tuple<int, CScript, int>> ret; + if (spenddata.merkle_root.IsNull()) return ret; + + /** Data structure to represent the nodes of the tree we're going to build. */ + struct TreeNode { + /** Hash of this node, if known; 0 otherwise. */ + uint256 hash; + /** The left and right subtrees (note that their order is irrelevant). */ + std::unique_ptr<TreeNode> sub[2]; + /** If this is known to be a leaf node, a pointer to the (script, leaf_ver) pair. + * nullptr otherwise. */ + const std::pair<CScript, int>* leaf = nullptr; + /** Whether or not this node has been explored (is known to be a leaf, or known to have children). */ + bool explored = false; + /** Whether or not this node is an inner node (unknown until explored = true). */ + bool inner; + /** Whether or not we have produced output for this subtree. */ + bool done = false; + }; + + // Build tree from the provided branches. + TreeNode root; + root.hash = spenddata.merkle_root; + for (const auto& [key, control_blocks] : spenddata.scripts) { + const auto& [script, leaf_ver] = key; + for (const auto& control : control_blocks) { + // Skip script records with nonsensical leaf version. + if (leaf_ver < 0 || leaf_ver >= 0x100 || leaf_ver & 1) continue; + // Skip script records with invalid control block sizes. + if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE || + ((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) continue; + // Skip script records that don't match the control block. + if ((control[0] & TAPROOT_LEAF_MASK) != leaf_ver) continue; + // Skip script records that don't match the provided Merkle root. + const uint256 leaf_hash = ComputeTapleafHash(leaf_ver, script); + const uint256 merkle_root = ComputeTaprootMerkleRoot(control, leaf_hash); + if (merkle_root != spenddata.merkle_root) continue; + + TreeNode* node = &root; + size_t levels = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE; + for (size_t depth = 0; depth < levels; ++depth) { + // Can't descend into a node which we already know is a leaf. + if (node->explored && !node->inner) return std::nullopt; + + // Extract partner hash from Merkle branch in control block. + uint256 hash; + std::copy(control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - 1 - depth) * TAPROOT_CONTROL_NODE_SIZE, + control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - depth) * TAPROOT_CONTROL_NODE_SIZE, + hash.begin()); + + if (node->sub[0]) { + // Descend into the existing left or right branch. + bool desc = false; + for (int i = 0; i < 2; ++i) { + if (node->sub[i]->hash == hash || (node->sub[i]->hash.IsNull() && node->sub[1-i]->hash != hash)) { + node->sub[i]->hash = hash; + node = &*node->sub[1-i]; + desc = true; + break; + } + } + if (!desc) return std::nullopt; // This probably requires a hash collision to hit. + } else { + // We're in an unexplored node. Create subtrees and descend. + node->explored = true; + node->inner = true; + node->sub[0] = std::make_unique<TreeNode>(); + node->sub[1] = std::make_unique<TreeNode>(); + node->sub[1]->hash = hash; + node = &*node->sub[0]; + } + } + // Cannot turn a known inner node into a leaf. + if (node->sub[0]) return std::nullopt; + node->explored = true; + node->inner = false; + node->leaf = &key; + node->hash = leaf_hash; + } + } + + // Recursive processing to turn the tree into flattened output. Use an explicit stack here to avoid + // overflowing the call stack (the tree may be 128 levels deep). + std::vector<TreeNode*> stack{&root}; + while (!stack.empty()) { + TreeNode& node = *stack.back(); + if (!node.explored) { + // Unexplored node, which means the tree is incomplete. + return std::nullopt; + } else if (!node.inner) { + // Leaf node; produce output. + ret.emplace_back(stack.size() - 1, node.leaf->first, node.leaf->second); + node.done = true; + stack.pop_back(); + } else if (node.sub[0]->done && !node.sub[1]->done && !node.sub[1]->explored && !node.sub[1]->hash.IsNull() && + (CHashWriter{HASHER_TAPBRANCH} << node.sub[1]->hash << node.sub[1]->hash).GetSHA256() == node.hash) { + // Whenever there are nodes with two identical subtrees under it, we run into a problem: + // the control blocks for the leaves underneath those will be identical as well, and thus + // they will all be matched to the same path in the tree. The result is that at the location + // where the duplicate occurred, the left child will contain a normal tree that can be explored + // and processed, but the right one will remain unexplored. + // + // This situation can be detected, by encountering an inner node with unexplored right subtree + // with known hash, and H_TapBranch(hash, hash) is equal to the parent node (this node)'s hash. + // + // To deal with this, simply process the left tree a second time (set its done flag to false; + // noting that the done flag of its children have already been set to false after processing + // those). To avoid ending up in an infinite loop, set the done flag of the right (unexplored) + // subtree to true. + node.sub[0]->done = false; + node.sub[1]->done = true; + } else if (node.sub[0]->done && node.sub[1]->done) { + // An internal node which we're finished with. + node.sub[0]->done = false; + node.sub[1]->done = false; + node.done = true; + stack.pop_back(); + } else if (!node.sub[0]->done) { + // An internal node whose left branch hasn't been processed yet. Do so first. + stack.push_back(&*node.sub[0]); + } else if (!node.sub[1]->done) { + // An internal node whose right branch hasn't been processed yet. Do so first. + stack.push_back(&*node.sub[1]); + } + } + + return ret; +} |