aboutsummaryrefslogtreecommitdiff
path: root/src/script/miniscript.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/script/miniscript.h')
-rw-r--r--src/script/miniscript.h1652
1 files changed, 1652 insertions, 0 deletions
diff --git a/src/script/miniscript.h b/src/script/miniscript.h
new file mode 100644
index 0000000000..5c1cc316dc
--- /dev/null
+++ b/src/script/miniscript.h
@@ -0,0 +1,1652 @@
+// Copyright (c) 2019 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#ifndef BITCOIN_SCRIPT_MINISCRIPT_H
+#define BITCOIN_SCRIPT_MINISCRIPT_H
+
+#include <algorithm>
+#include <numeric>
+#include <memory>
+#include <optional>
+#include <string>
+#include <vector>
+
+#include <stdlib.h>
+#include <assert.h>
+
+#include <policy/policy.h>
+#include <primitives/transaction.h>
+#include <script/script.h>
+#include <span.h>
+#include <util/spanparsing.h>
+#include <util/strencodings.h>
+#include <util/string.h>
+#include <util/vector.h>
+
+namespace miniscript {
+
+/** This type encapsulates the miniscript type system properties.
+ *
+ * Every miniscript expression is one of 4 basic types, and additionally has
+ * a number of boolean type properties.
+ *
+ * The basic types are:
+ * - "B" Base:
+ * - Takes its inputs from the top of the stack.
+ * - When satisfied, pushes a nonzero value of up to 4 bytes onto the stack.
+ * - When dissatisfied, pushes a 0 onto the stack.
+ * - This is used for most expressions, and required for the top level one.
+ * - For example: older(n) = <n> OP_CHECKSEQUENCEVERIFY.
+ * - "V" Verify:
+ * - Takes its inputs from the top of the stack.
+ * - When satisfactied, pushes nothing.
+ * - Cannot be dissatisfied.
+ * - This can be obtained by adding an OP_VERIFY to a B, modifying the last opcode
+ * of a B to its -VERIFY version (only for OP_CHECKSIG, OP_CHECKSIGVERIFY
+ * and OP_EQUAL), or by combining a V fragment under some conditions.
+ * - For example vc:pk_k(key) = <key> OP_CHECKSIGVERIFY
+ * - "K" Key:
+ * - Takes its inputs from the top of the stack.
+ * - Becomes a B when followed by OP_CHECKSIG.
+ * - Always pushes a public key onto the stack, for which a signature is to be
+ * provided to satisfy the expression.
+ * - For example pk_h(key) = OP_DUP OP_HASH160 <Hash160(key)> OP_EQUALVERIFY
+ * - "W" Wrapped:
+ * - Takes its input from one below the top of the stack.
+ * - When satisfied, pushes a nonzero value (like B) on top of the stack, or one below.
+ * - When dissatisfied, pushes 0 op top of the stack or one below.
+ * - Is always "OP_SWAP [B]" or "OP_TOALTSTACK [B] OP_FROMALTSTACK".
+ * - For example sc:pk_k(key) = OP_SWAP <key> OP_CHECKSIG
+ *
+ * There a type properties that help reasoning about correctness:
+ * - "z" Zero-arg:
+ * - Is known to always consume exactly 0 stack elements.
+ * - For example after(n) = <n> OP_CHECKLOCKTIMEVERIFY
+ * - "o" One-arg:
+ * - Is known to always consume exactly 1 stack element.
+ * - Conflicts with property 'z'
+ * - For example sha256(hash) = OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 <hash> OP_EQUAL
+ * - "n" Nonzero:
+ * - For every way this expression can be satisfied, a satisfaction exists that never needs
+ * a zero top stack element.
+ * - Conflicts with property 'z' and with type 'W'.
+ * - "d" Dissatisfiable:
+ * - There is an easy way to construct a dissatisfaction for this expression.
+ * - Conflicts with type 'V'.
+ * - "u" Unit:
+ * - In case of satisfaction, an exact 1 is put on the stack (rather than just nonzero).
+ * - Conflicts with type 'V'.
+ *
+ * Additional type properties help reasoning about nonmalleability:
+ * - "e" Expression:
+ * - This implies property 'd', but the dissatisfaction is nonmalleable.
+ * - This generally requires 'e' for all subexpressions which are invoked for that
+ * dissatifsaction, and property 'f' for the unexecuted subexpressions in that case.
+ * - Conflicts with type 'V'.
+ * - "f" Forced:
+ * - Dissatisfactions (if any) for this expression always involve at least one signature.
+ * - Is always true for type 'V'.
+ * - "s" Safe:
+ * - Satisfactions for this expression always involve at least one signature.
+ * - "m" Nonmalleable:
+ * - For every way this expression can be satisfied (which may be none),
+ * a nonmalleable satisfaction exists.
+ * - This generally requires 'm' for all subexpressions, and 'e' for all subexpressions
+ * which are dissatisfied when satisfying the parent.
+ *
+ * One type property is an implementation detail:
+ * - "x" Expensive verify:
+ * - Expressions with this property have a script whose last opcode is not EQUAL, CHECKSIG, or CHECKMULTISIG.
+ * - Not having this property means that it can be converted to a V at no cost (by switching to the
+ * -VERIFY version of the last opcode).
+ *
+ * Five more type properties for representing timelock information. Spend paths
+ * in miniscripts containing conflicting timelocks and heightlocks cannot be spent together.
+ * This helps users detect if miniscript does not match the semantic behaviour the
+ * user expects.
+ * - "g" Whether the branch contains a relative time timelock
+ * - "h" Whether the branch contains a relative height timelock
+ * - "i" Whether the branch contains an absolute time timelock
+ * - "j" Whether the branch contains an absolute height timelock
+ * - "k"
+ * - Whether all satisfactions of this expression don't contain a mix of heightlock and timelock
+ * of the same type.
+ * - If the miniscript does not have the "k" property, the miniscript template will not match
+ * the user expectation of the corresponding spending policy.
+ * For each of these properties the subset rule holds: an expression with properties X, Y, and Z, is also
+ * valid in places where an X, a Y, a Z, an XY, ... is expected.
+*/
+class Type {
+ //! Internal bitmap of properties (see ""_mst operator for details).
+ uint32_t m_flags;
+
+ //! Internal constructor used by the ""_mst operator.
+ explicit constexpr Type(uint32_t flags) : m_flags(flags) {}
+
+public:
+ //! The only way to publicly construct a Type is using this literal operator.
+ friend constexpr Type operator"" _mst(const char* c, size_t l);
+
+ //! Compute the type with the union of properties.
+ constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); }
+
+ //! Compute the type with the intersection of properties.
+ constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); }
+
+ //! Check whether the left hand's properties are superset of the right's (= left is a subtype of right).
+ constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; }
+
+ //! Comparison operator to enable use in sets/maps (total ordering incompatible with <<).
+ constexpr bool operator<(Type x) const { return m_flags < x.m_flags; }
+
+ //! Equality operator.
+ constexpr bool operator==(Type x) const { return m_flags == x.m_flags; }
+
+ //! The empty type if x is false, itself otherwise.
+ constexpr Type If(bool x) const { return Type(x ? m_flags : 0); }
+};
+
+//! Literal operator to construct Type objects.
+inline constexpr Type operator"" _mst(const char* c, size_t l) {
+ Type typ{0};
+
+ for (const char *p = c; p < c + l; p++) {
+ typ = typ | Type(
+ *p == 'B' ? 1 << 0 : // Base type
+ *p == 'V' ? 1 << 1 : // Verify type
+ *p == 'K' ? 1 << 2 : // Key type
+ *p == 'W' ? 1 << 3 : // Wrapped type
+ *p == 'z' ? 1 << 4 : // Zero-arg property
+ *p == 'o' ? 1 << 5 : // One-arg property
+ *p == 'n' ? 1 << 6 : // Nonzero arg property
+ *p == 'd' ? 1 << 7 : // Dissatisfiable property
+ *p == 'u' ? 1 << 8 : // Unit property
+ *p == 'e' ? 1 << 9 : // Expression property
+ *p == 'f' ? 1 << 10 : // Forced property
+ *p == 's' ? 1 << 11 : // Safe property
+ *p == 'm' ? 1 << 12 : // Nonmalleable property
+ *p == 'x' ? 1 << 13 : // Expensive verify
+ *p == 'g' ? 1 << 14 : // older: contains relative time timelock (csv_time)
+ *p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height)
+ *p == 'i' ? 1 << 16 : // after: contains time timelock (cltv_time)
+ *p == 'j' ? 1 << 17 : // after: contains height timelock (cltv_height)
+ *p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks
+ (throw std::logic_error("Unknown character in _mst literal"), 0)
+ );
+ }
+
+ return typ;
+}
+
+template<typename Key> struct Node;
+template<typename Key> using NodeRef = std::shared_ptr<const Node<Key>>;
+
+//! Construct a miniscript node as a shared_ptr.
+template<typename Key, typename... Args>
+NodeRef<Key> MakeNodeRef(Args&&... args) { return std::make_shared<const Node<Key>>(std::forward<Args>(args)...); }
+
+//! The different node types in miniscript.
+enum class Fragment {
+ JUST_0, //!< OP_0
+ JUST_1, //!< OP_1
+ PK_K, //!< [key]
+ PK_H, //!< OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY
+ OLDER, //!< [n] OP_CHECKSEQUENCEVERIFY
+ AFTER, //!< [n] OP_CHECKLOCKTIMEVERIFY
+ SHA256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL
+ HASH256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL
+ RIPEMD160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL
+ HASH160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL
+ WRAP_A, //!< OP_TOALTSTACK [X] OP_FROMALTSTACK
+ WRAP_S, //!< OP_SWAP [X]
+ WRAP_C, //!< [X] OP_CHECKSIG
+ WRAP_D, //!< OP_DUP OP_IF [X] OP_ENDIF
+ WRAP_V, //!< [X] OP_VERIFY (or -VERIFY version of last opcode in X)
+ WRAP_J, //!< OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF
+ WRAP_N, //!< [X] OP_0NOTEQUAL
+ AND_V, //!< [X] [Y]
+ AND_B, //!< [X] [Y] OP_BOOLAND
+ OR_B, //!< [X] [Y] OP_BOOLOR
+ OR_C, //!< [X] OP_NOTIF [Y] OP_ENDIF
+ OR_D, //!< [X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF
+ OR_I, //!< OP_IF [X] OP_ELSE [Y] OP_ENDIF
+ ANDOR, //!< [X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF
+ THRESH, //!< [X1] ([Xn] OP_ADD)* [k] OP_EQUAL
+ MULTI, //!< [k] [key_n]* [n] OP_CHECKMULTISIG
+ // AND_N(X,Y) is represented as ANDOR(X,Y,0)
+ // WRAP_T(X) is represented as AND_V(X,1)
+ // WRAP_L(X) is represented as OR_I(0,X)
+ // WRAP_U(X) is represented as OR_I(X,0)
+};
+
+
+namespace internal {
+
+//! Helper function for Node::CalcType.
+Type ComputeType(Fragment nodetype, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys);
+
+//! Helper function for Node::CalcScriptLen.
+size_t ComputeScriptLen(Fragment nodetype, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys);
+
+//! A helper sanitizer/checker for the output of CalcType.
+Type SanitizeType(Type x);
+
+//! Class whose objects represent the maximum of a list of integers.
+template<typename I>
+struct MaxInt {
+ const bool valid;
+ const I value;
+
+ MaxInt() : valid(false), value(0) {}
+ MaxInt(I val) : valid(true), value(val) {}
+
+ friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) {
+ if (!a.valid || !b.valid) return {};
+ return a.value + b.value;
+ }
+
+ friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) {
+ if (!a.valid) return b;
+ if (!b.valid) return a;
+ return std::max(a.value, b.value);
+ }
+};
+
+struct Ops {
+ //! Non-push opcodes.
+ uint32_t count;
+ //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy.
+ MaxInt<uint32_t> sat;
+ //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy.
+ MaxInt<uint32_t> dsat;
+
+ Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {};
+};
+
+struct StackSize {
+ //! Maximum stack size to satisfy;
+ MaxInt<uint32_t> sat;
+ //! Maximum stack size to dissatisfy;
+ MaxInt<uint32_t> dsat;
+
+ StackSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
+};
+
+} // namespace internal
+
+//! A node in a miniscript expression.
+template<typename Key>
+struct Node {
+ //! What node type this node is.
+ const Fragment nodetype;
+ //! The k parameter (time for OLDER/AFTER, threshold for THRESH(_M))
+ const uint32_t k = 0;
+ //! The keys used by this expression (only for PK_K/PK_H/MULTI)
+ const std::vector<Key> keys;
+ //! The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD10).
+ const std::vector<unsigned char> data;
+ //! Subexpressions (for WRAP_*/AND_*/OR_*/ANDOR/THRESH)
+ const std::vector<NodeRef<Key>> subs;
+
+private:
+ //! Cached ops counts.
+ const internal::Ops ops;
+ //! Cached stack size bounds.
+ const internal::StackSize ss;
+ //! Cached expression type (computed by CalcType and fed through SanitizeType).
+ const Type typ;
+ //! Cached script length (computed by CalcScriptLen).
+ const size_t scriptlen;
+
+ //! Compute the length of the script for this miniscript (including children).
+ size_t CalcScriptLen() const {
+ size_t subsize = 0;
+ for (const auto& sub : subs) {
+ subsize += sub->ScriptSize();
+ }
+ Type sub0type = subs.size() > 0 ? subs[0]->GetType() : ""_mst;
+ return internal::ComputeScriptLen(nodetype, sub0type, subsize, k, subs.size(), keys.size());
+ }
+
+ /* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls.
+ *
+ * The algorithm is defined by two functions: downfn and upfn. Conceptually, the
+ * result can be thought of as first using downfn to compute a "state" for each node,
+ * from the root down to the leaves. Then upfn is used to compute a "result" for each
+ * node, from the leaves back up to the root, which is then returned. In the actual
+ * implementation, both functions are invoked in an interleaved fashion, performing a
+ * depth-first traversal of the tree.
+ *
+ * In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn):
+ * - root is the state of the root node, of type State.
+ * - downfn is a callable (State&, const Node&, size_t) -> State, which given a
+ * node, its state, and an index of one of its children, computes the state of that
+ * child. It can modify the state. Children of a given node will have downfn()
+ * called in order.
+ * - upfn is a callable (State&&, const Node&, Span<Result>) -> std::optional<Result>,
+ * which given a node, its state, and a Span of the results of its children,
+ * computes the result of the node. If std::nullopt is returned by upfn,
+ * TreeEvalMaybe() immediately returns std::nullopt.
+ * The return value of TreeEvalMaybe is the result of the root node.
+ */
+ template<typename Result, typename State, typename DownFn, typename UpFn>
+ std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
+ {
+ /** Entries of the explicit stack tracked in this algorithm. */
+ struct StackElem
+ {
+ const Node& node; //!< The node being evaluated.
+ size_t expanded; //!< How many children of this node have been expanded.
+ State state; //!< The state for that node.
+
+ StackElem(const Node& node_, size_t exp_, State&& state_) :
+ node(node_), expanded(exp_), state(std::move(state_)) {}
+ };
+ /* Stack of tree nodes being explored. */
+ std::vector<StackElem> stack;
+ /* Results of subtrees so far. Their order and mapping to tree nodes
+ * is implicitly defined by stack. */
+ std::vector<Result> results;
+ stack.emplace_back(*this, 0, std::move(root_state));
+
+ /* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F).
+ * State variables are omitted for simplicity.
+ *
+ * First: stack=[(A,0)] results=[]
+ * stack=[(A,1),(B,0)] results=[]
+ * stack=[(A,1)] results=[B]
+ * stack=[(A,2),(C,0)] results=[B]
+ * stack=[(A,2),(C,1),(D,0)] results=[B]
+ * stack=[(A,2),(C,1)] results=[B,D]
+ * stack=[(A,2),(C,2),(E,0)] results=[B,D]
+ * stack=[(A,2),(C,2)] results=[B,D,E]
+ * stack=[(A,2)] results=[B,C]
+ * stack=[(A,3),(F,0)] results=[B,C]
+ * stack=[(A,3)] results=[B,C,F]
+ * Final: stack=[] results=[A]
+ */
+ while (stack.size()) {
+ const Node& node = stack.back().node;
+ if (stack.back().expanded < node.subs.size()) {
+ /* We encounter a tree node with at least one unexpanded child.
+ * Expand it. By the time we hit this node again, the result of
+ * that child (and all earlier children) will be at the end of `results`. */
+ size_t child_index = stack.back().expanded++;
+ State child_state = downfn(stack.back().state, node, child_index);
+ stack.emplace_back(*node.subs[child_index], 0, std::move(child_state));
+ continue;
+ }
+ // Invoke upfn with the last node.subs.size() elements of results as input.
+ assert(results.size() >= node.subs.size());
+ std::optional<Result> result{upfn(std::move(stack.back().state), node,
+ Span<Result>{results}.last(node.subs.size()))};
+ // If evaluation returns std::nullopt, abort immediately.
+ if (!result) return {};
+ // Replace the last node.subs.size() elements of results with the new result.
+ results.erase(results.end() - node.subs.size(), results.end());
+ results.push_back(std::move(*result));
+ stack.pop_back();
+ }
+ // The final remaining results element is the root result, return it.
+ assert(results.size() == 1);
+ return std::move(results[0]);
+ }
+
+ /** Like TreeEvalMaybe, but always produces a result. upfn must return Result. */
+ template<typename Result, typename State, typename DownFn, typename UpFn>
+ Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const
+ {
+ // Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then
+ // unconditionally dereference the result (it cannot be std::nullopt).
+ return std::move(*TreeEvalMaybe<Result>(std::move(root_state),
+ std::forward<DownFn>(downfn),
+ [&upfn](State&& state, const Node& node, Span<Result> subs) {
+ Result res{upfn(std::move(state), node, subs)};
+ return std::optional<Result>(std::move(res));
+ }
+ ));
+ }
+
+ //! Compute the type for this miniscript.
+ Type CalcType() const {
+ using namespace internal;
+
+ // THRESH has a variable number of subexpressions
+ std::vector<Type> sub_types;
+ if (nodetype == Fragment::THRESH) {
+ for (const auto& sub : subs) sub_types.push_back(sub->GetType());
+ }
+ // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions.
+ Type x = subs.size() > 0 ? subs[0]->GetType() : ""_mst;
+ Type y = subs.size() > 1 ? subs[1]->GetType() : ""_mst;
+ Type z = subs.size() > 2 ? subs[2]->GetType() : ""_mst;
+
+ return SanitizeType(ComputeType(nodetype, x, y, z, sub_types, k, data.size(), subs.size(), keys.size()));
+ }
+
+public:
+ template<typename Ctx>
+ CScript ToScript(const Ctx& ctx) const
+ {
+ // To construct the CScript for a Miniscript object, we use the TreeEval algorithm.
+ // The State is a boolean: whether or not the node's script expansion is followed
+ // by an OP_VERIFY (which may need to be combined with the last script opcode).
+ auto downfn = [](bool verify, const Node& node, size_t index) {
+ // For WRAP_V, the subexpression is certainly followed by OP_VERIFY.
+ if (node.nodetype == Fragment::WRAP_V) return true;
+ // The subexpression of WRAP_S, and the last subexpression of AND_V
+ // inherit the followed-by-OP_VERIFY property from the parent.
+ if (node.nodetype == Fragment::WRAP_S ||
+ (node.nodetype == Fragment::AND_V && index == 1)) return verify;
+ return false;
+ };
+ // The upward function computes for a node, given its followed-by-OP_VERIFY status
+ // and the CScripts of its child nodes, the CScript of the node.
+ auto upfn = [&ctx](bool verify, const Node& node, Span<CScript> subs) -> CScript {
+ switch (node.nodetype) {
+ case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0]));
+ case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY);
+ case Fragment::OLDER: return BuildScript(node.k, OP_CHECKSEQUENCEVERIFY);
+ case Fragment::AFTER: return BuildScript(node.k, OP_CHECKLOCKTIMEVERIFY);
+ case Fragment::SHA256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_SHA256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
+ case Fragment::RIPEMD160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_RIPEMD160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
+ case Fragment::HASH256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
+ case Fragment::HASH160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
+ case Fragment::WRAP_A: return BuildScript(OP_TOALTSTACK, subs[0], OP_FROMALTSTACK);
+ case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]);
+ case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG);
+ case Fragment::WRAP_D: return BuildScript(OP_DUP, OP_IF, subs[0], OP_ENDIF);
+ case Fragment::WRAP_V: {
+ if (node.subs[0]->GetType() << "x"_mst) {
+ return BuildScript(std::move(subs[0]), OP_VERIFY);
+ } else {
+ return std::move(subs[0]);
+ }
+ }
+ case Fragment::WRAP_J: return BuildScript(OP_SIZE, OP_0NOTEQUAL, OP_IF, subs[0], OP_ENDIF);
+ case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL);
+ case Fragment::JUST_1: return BuildScript(OP_1);
+ case Fragment::JUST_0: return BuildScript(OP_0);
+ case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]);
+ case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND);
+ case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR);
+ case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF);
+ case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF);
+ case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF);
+ case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF);
+ case Fragment::MULTI: {
+ CScript script = BuildScript(node.k);
+ for (const auto& key : node.keys) {
+ script = BuildScript(std::move(script), ctx.ToPKBytes(key));
+ }
+ return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG);
+ }
+ case Fragment::THRESH: {
+ CScript script = std::move(subs[0]);
+ for (size_t i = 1; i < subs.size(); ++i) {
+ script = BuildScript(std::move(script), subs[i], OP_ADD);
+ }
+ return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL);
+ }
+ }
+ assert(false);
+ return {};
+ };
+ return TreeEval<CScript>(false, downfn, upfn);
+ }
+
+ template<typename CTx>
+ bool ToString(const CTx& ctx, std::string& ret) const {
+ // To construct the std::string representation for a Miniscript object, we use
+ // the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a
+ // wrapper. If so, non-wrapper expressions must be prefixed with a ":".
+ auto downfn = [](bool, const Node& node, size_t) {
+ return (node.nodetype == Fragment::WRAP_A || node.nodetype == Fragment::WRAP_S ||
+ node.nodetype == Fragment::WRAP_D || node.nodetype == Fragment::WRAP_V ||
+ node.nodetype == Fragment::WRAP_J || node.nodetype == Fragment::WRAP_N ||
+ node.nodetype == Fragment::WRAP_C ||
+ (node.nodetype == Fragment::AND_V && node.subs[1]->nodetype == Fragment::JUST_1) ||
+ (node.nodetype == Fragment::OR_I && node.subs[0]->nodetype == Fragment::JUST_0) ||
+ (node.nodetype == Fragment::OR_I && node.subs[1]->nodetype == Fragment::JUST_0));
+ };
+ // The upward function computes for a node, given whether its parent is a wrapper,
+ // and the string representations of its child nodes, the string representation of the node.
+ auto upfn = [&ctx](bool wrapped, const Node& node, Span<std::string> subs) -> std::optional<std::string> {
+ std::string ret = wrapped ? ":" : "";
+
+ switch (node.nodetype) {
+ case Fragment::WRAP_A: return "a" + std::move(subs[0]);
+ case Fragment::WRAP_S: return "s" + std::move(subs[0]);
+ case Fragment::WRAP_C:
+ if (node.subs[0]->nodetype == Fragment::PK_K) {
+ // pk(K) is syntactic sugar for c:pk_k(K)
+ std::string key_str;
+ if (!ctx.ToString(node.subs[0]->keys[0], key_str)) return {};
+ return std::move(ret) + "pk(" + std::move(key_str) + ")";
+ }
+ if (node.subs[0]->nodetype == Fragment::PK_H) {
+ // pkh(K) is syntactic sugar for c:pk_h(K)
+ std::string key_str;
+ if (!ctx.ToString(node.subs[0]->keys[0], key_str)) return {};
+ return std::move(ret) + "pkh(" + std::move(key_str) + ")";
+ }
+ return "c" + std::move(subs[0]);
+ case Fragment::WRAP_D: return "d" + std::move(subs[0]);
+ case Fragment::WRAP_V: return "v" + std::move(subs[0]);
+ case Fragment::WRAP_J: return "j" + std::move(subs[0]);
+ case Fragment::WRAP_N: return "n" + std::move(subs[0]);
+ case Fragment::AND_V:
+ // t:X is syntactic sugar for and_v(X,1).
+ if (node.subs[1]->nodetype == Fragment::JUST_1) return "t" + std::move(subs[0]);
+ break;
+ case Fragment::OR_I:
+ if (node.subs[0]->nodetype == Fragment::JUST_0) return "l" + std::move(subs[1]);
+ if (node.subs[1]->nodetype == Fragment::JUST_0) return "u" + std::move(subs[0]);
+ break;
+ default: break;
+ }
+ switch (node.nodetype) {
+ case Fragment::PK_K: {
+ std::string key_str;
+ if (!ctx.ToString(node.keys[0], key_str)) return {};
+ return std::move(ret) + "pk_k(" + std::move(key_str) + ")";
+ }
+ case Fragment::PK_H: {
+ std::string key_str;
+ if (!ctx.ToString(node.keys[0], key_str)) return {};
+ return std::move(ret) + "pk_h(" + std::move(key_str) + ")";
+ }
+ case Fragment::AFTER: return std::move(ret) + "after(" + ::ToString(node.k) + ")";
+ case Fragment::OLDER: return std::move(ret) + "older(" + ::ToString(node.k) + ")";
+ case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")";
+ case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")";
+ case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")";
+ case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")";
+ case Fragment::JUST_1: return std::move(ret) + "1";
+ case Fragment::JUST_0: return std::move(ret) + "0";
+ case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ case Fragment::ANDOR:
+ // and_n(X,Y) is syntactic sugar for andor(X,Y,0).
+ if (node.subs[2]->nodetype == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")";
+ case Fragment::MULTI: {
+ auto str = std::move(ret) + "multi(" + ::ToString(node.k);
+ for (const auto& key : node.keys) {
+ std::string key_str;
+ if (!ctx.ToString(key, key_str)) return {};
+ str += "," + std::move(key_str);
+ }
+ return std::move(str) + ")";
+ }
+ case Fragment::THRESH: {
+ auto str = std::move(ret) + "thresh(" + ::ToString(node.k);
+ for (auto& sub : subs) {
+ str += "," + std::move(sub);
+ }
+ return std::move(str) + ")";
+ }
+ default: assert(false);
+ }
+ return ""; // Should never be reached.
+ };
+
+ auto res = TreeEvalMaybe<std::string>(false, downfn, upfn);
+ if (res.has_value()) ret = std::move(*res);
+ return res.has_value();
+ }
+
+ internal::Ops CalcOps() const {
+ switch (nodetype) {
+ case Fragment::JUST_1: return {0, 0, {}};
+ case Fragment::JUST_0: return {0, {}, 0};
+ case Fragment::PK_K: return {0, 0, 0};
+ case Fragment::PK_H: return {3, 0, 0};
+ case Fragment::OLDER:
+ case Fragment::AFTER: return {1, 0, {}};
+ case Fragment::SHA256:
+ case Fragment::RIPEMD160:
+ case Fragment::HASH256:
+ case Fragment::HASH160: return {4, 0, {}};
+ case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}};
+ case Fragment::AND_B: {
+ const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
+ const auto sat{subs[0]->ops.sat + subs[1]->ops.sat};
+ const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
+ return {count, sat, dsat};
+ }
+ case Fragment::OR_B: {
+ const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
+ const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)};
+ const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
+ return {count, sat, dsat};
+ }
+ case Fragment::OR_D: {
+ const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
+ const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
+ const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
+ return {count, sat, dsat};
+ }
+ case Fragment::OR_C: {
+ const auto count{2 + subs[0]->ops.count + subs[1]->ops.count};
+ const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
+ return {count, sat, {}};
+ }
+ case Fragment::OR_I: {
+ const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
+ const auto sat{subs[0]->ops.sat | subs[1]->ops.sat};
+ const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat};
+ return {count, sat, dsat};
+ }
+ case Fragment::ANDOR: {
+ const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count};
+ const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)};
+ const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat};
+ return {count, sat, dsat};
+ }
+ case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()};
+ case Fragment::WRAP_S:
+ case Fragment::WRAP_C:
+ case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
+ case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
+ case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0};
+ case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0};
+ case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}};
+ case Fragment::THRESH: {
+ uint32_t count = 0;
+ auto sats = Vector(internal::MaxInt<uint32_t>(0));
+ for (const auto& sub : subs) {
+ count += sub->ops.count + 1;
+ auto next_sats = Vector(sats[0] + sub->ops.dsat);
+ for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat));
+ next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat);
+ sats = std::move(next_sats);
+ }
+ assert(k <= sats.size());
+ return {count, sats[k], sats[0]};
+ }
+ }
+ assert(false);
+ return {0, {}, {}};
+ }
+
+ internal::StackSize CalcStackSize() const {
+ switch (nodetype) {
+ case Fragment::JUST_0: return {{}, 0};
+ case Fragment::JUST_1:
+ case Fragment::OLDER:
+ case Fragment::AFTER: return {0, {}};
+ case Fragment::PK_K: return {1, 1};
+ case Fragment::PK_H: return {2, 2};
+ case Fragment::SHA256:
+ case Fragment::RIPEMD160:
+ case Fragment::HASH256:
+ case Fragment::HASH160: return {1, {}};
+ case Fragment::ANDOR: {
+ const auto sat{(subs[0]->ss.sat + subs[1]->ss.sat) | (subs[0]->ss.dsat + subs[2]->ss.sat)};
+ const auto dsat{subs[0]->ss.dsat + subs[2]->ss.dsat};
+ return {sat, dsat};
+ }
+ case Fragment::AND_V: return {subs[0]->ss.sat + subs[1]->ss.sat, {}};
+ case Fragment::AND_B: return {subs[0]->ss.sat + subs[1]->ss.sat, subs[0]->ss.dsat + subs[1]->ss.dsat};
+ case Fragment::OR_B: {
+ const auto sat{(subs[0]->ss.dsat + subs[1]->ss.sat) | (subs[0]->ss.sat + subs[1]->ss.dsat)};
+ const auto dsat{subs[0]->ss.dsat + subs[1]->ss.dsat};
+ return {sat, dsat};
+ }
+ case Fragment::OR_C: return {subs[0]->ss.sat | (subs[0]->ss.dsat + subs[1]->ss.sat), {}};
+ case Fragment::OR_D: return {subs[0]->ss.sat | (subs[0]->ss.dsat + subs[1]->ss.sat), subs[0]->ss.dsat + subs[1]->ss.dsat};
+ case Fragment::OR_I: return {(subs[0]->ss.sat + 1) | (subs[1]->ss.sat + 1), (subs[0]->ss.dsat + 1) | (subs[1]->ss.dsat + 1)};
+ case Fragment::MULTI: return {k + 1, k + 1};
+ case Fragment::WRAP_A:
+ case Fragment::WRAP_N:
+ case Fragment::WRAP_S:
+ case Fragment::WRAP_C: return subs[0]->ss;
+ case Fragment::WRAP_D: return {1 + subs[0]->ss.sat, 1};
+ case Fragment::WRAP_V: return {subs[0]->ss.sat, {}};
+ case Fragment::WRAP_J: return {subs[0]->ss.sat, 1};
+ case Fragment::THRESH: {
+ auto sats = Vector(internal::MaxInt<uint32_t>(0));
+ for (const auto& sub : subs) {
+ auto next_sats = Vector(sats[0] + sub->ss.dsat);
+ for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ss.dsat) | (sats[j - 1] + sub->ss.sat));
+ next_sats.push_back(sats[sats.size() - 1] + sub->ss.sat);
+ sats = std::move(next_sats);
+ }
+ assert(k <= sats.size());
+ return {sats[k], sats[0]};
+ }
+ }
+ assert(false);
+ return {{}, {}};
+ }
+
+public:
+ //! Return the size of the script for this expression (faster than ToScript().size()).
+ size_t ScriptSize() const { return scriptlen; }
+
+ //! Return the maximum number of ops needed to satisfy this script non-malleably.
+ uint32_t GetOps() const { return ops.count + ops.sat.value; }
+
+ //! Check the ops limit of this script against the consensus limit.
+ bool CheckOpsLimit() const { return GetOps() <= MAX_OPS_PER_SCRIPT; }
+
+ /** Return the maximum number of stack elements needed to satisfy this script non-malleably, including
+ * the script push. */
+ uint32_t GetStackSize() const { return ss.sat.value + 1; }
+
+ //! Check the maximum stack size for this script against the policy limit.
+ bool CheckStackSize() const { return GetStackSize() - 1 <= MAX_STANDARD_P2WSH_STACK_ITEMS; }
+
+ //! Return the expression type.
+ Type GetType() const { return typ; }
+
+ //! Check whether this node is valid at all.
+ bool IsValid() const { return !(GetType() == ""_mst) && ScriptSize() <= MAX_STANDARD_P2WSH_SCRIPT_SIZE; }
+
+ //! Check whether this node is valid as a script on its own.
+ bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; }
+
+ //! Check whether this script can always be satisfied in a non-malleable way.
+ bool IsNonMalleable() const { return GetType() << "m"_mst; }
+
+ //! Check whether this script always needs a signature.
+ bool NeedsSignature() const { return GetType() << "s"_mst; }
+
+ //! Do all sanity checks.
+ bool IsSane() const { return IsValid() && GetType() << "mk"_mst && CheckOpsLimit() && CheckStackSize(); }
+
+ //! Check whether this node is safe as a script on its own.
+ bool IsSaneTopLevel() const { return IsValidTopLevel() && IsSane() && NeedsSignature(); }
+
+ //! Equality testing.
+ bool operator==(const Node<Key>& arg) const
+ {
+ if (nodetype != arg.nodetype) return false;
+ if (k != arg.k) return false;
+ if (data != arg.data) return false;
+ if (keys != arg.keys) return false;
+ if (subs.size() != arg.subs.size()) return false;
+ for (size_t i = 0; i < subs.size(); ++i) {
+ if (!(*subs[i] == *arg.subs[i])) return false;
+ }
+ assert(scriptlen == arg.scriptlen);
+ assert(typ == arg.typ);
+ return true;
+ }
+
+ // Constructors with various argument combinations.
+ Node(Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0) : nodetype(nt), k(val), data(std::move(arg)), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+ Node(Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0) : nodetype(nt), k(val), data(std::move(arg)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+ Node(Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0) : nodetype(nt), k(val), keys(std::move(key)), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+ Node(Fragment nt, std::vector<Key> key, uint32_t val = 0) : nodetype(nt), k(val), keys(std::move(key)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+ Node(Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0) : nodetype(nt), k(val), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+ Node(Fragment nt, uint32_t val = 0) : nodetype(nt), k(val), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+};
+
+namespace internal {
+
+enum class ParseContext {
+ /** An expression which may be begin with wrappers followed by a colon. */
+ WRAPPED_EXPR,
+ /** A miniscript expression which does not begin with wrappers. */
+ EXPR,
+
+ /** SWAP wraps the top constructed node with s: */
+ SWAP,
+ /** ALT wraps the top constructed node with a: */
+ ALT,
+ /** CHECK wraps the top constructed node with c: */
+ CHECK,
+ /** DUP_IF wraps the top constructed node with d: */
+ DUP_IF,
+ /** VERIFY wraps the top constructed node with v: */
+ VERIFY,
+ /** NON_ZERO wraps the top constructed node with j: */
+ NON_ZERO,
+ /** ZERO_NOTEQUAL wraps the top constructed node with n: */
+ ZERO_NOTEQUAL,
+ /** WRAP_U will construct an or_i(X,0) node from the top constructed node. */
+ WRAP_U,
+ /** WRAP_T will construct an and_v(X,1) node from the top constructed node. */
+ WRAP_T,
+
+ /** AND_N will construct an andor(X,Y,0) node from the last two constructed nodes. */
+ AND_N,
+ /** AND_V will construct an and_v node from the last two constructed nodes. */
+ AND_V,
+ /** AND_B will construct an and_b node from the last two constructed nodes. */
+ AND_B,
+ /** ANDOR will construct an andor node from the last three constructed nodes. */
+ ANDOR,
+ /** OR_B will construct an or_b node from the last two constructed nodes. */
+ OR_B,
+ /** OR_C will construct an or_c node from the last two constructed nodes. */
+ OR_C,
+ /** OR_D will construct an or_d node from the last two constructed nodes. */
+ OR_D,
+ /** OR_I will construct an or_i node from the last two constructed nodes. */
+ OR_I,
+
+ /** THRESH will read a wrapped expression, and then look for a COMMA. If
+ * no comma follows, it will construct a thresh node from the appropriate
+ * number of constructed children. Otherwise, it will recurse with another
+ * THRESH. */
+ THRESH,
+
+ /** COMMA expects the next element to be ',' and fails if not. */
+ COMMA,
+ /** CLOSE_BRACKET expects the next element to be ')' and fails if not. */
+ CLOSE_BRACKET,
+};
+
+int FindNextChar(Span<const char> in, const char m);
+
+/** Parse a key string ending with a ')' or ','. */
+template<typename Key, typename Ctx>
+std::optional<std::pair<Key, int>> ParseKeyEnd(Span<const char> in, const Ctx& ctx)
+{
+ Key key;
+ int key_size = FindNextChar(in, ')');
+ if (key_size < 1) return {};
+ if (!ctx.FromString(in.begin(), in.begin() + key_size, key)) return {};
+ return {{std::move(key), key_size}};
+}
+
+/** Parse a hex string ending at the end of the fragment's text representation. */
+template<typename Ctx>
+std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(Span<const char> in, const size_t expected_size,
+ const Ctx& ctx)
+{
+ int hash_size = FindNextChar(in, ')');
+ if (hash_size < 1) return {};
+ std::string val = std::string(in.begin(), in.begin() + hash_size);
+ if (!IsHex(val)) return {};
+ auto hash = ParseHex(val);
+ if (hash.size() != expected_size) return {};
+ return {{std::move(hash), hash_size}};
+}
+
+/** BuildBack pops the last two elements off `constructed` and wraps them in the specified Fragment */
+template<typename Key>
+void BuildBack(Fragment nt, std::vector<NodeRef<Key>>& constructed, const bool reverse = false)
+{
+ NodeRef<Key> child = std::move(constructed.back());
+ constructed.pop_back();
+ if (reverse) {
+ constructed.back() = MakeNodeRef<Key>(nt, Vector(std::move(child), std::move(constructed.back())));
+ } else {
+ constructed.back() = MakeNodeRef<Key>(nt, Vector(std::move(constructed.back()), std::move(child)));
+ }
+}
+
+//! Parse a miniscript from its textual descriptor form.
+template<typename Key, typename Ctx>
+inline NodeRef<Key> Parse(Span<const char> in, const Ctx& ctx)
+{
+ using namespace spanparsing;
+
+ // The two integers are used to hold state for thresh()
+ std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse;
+ std::vector<NodeRef<Key>> constructed;
+
+ to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
+
+ while (!to_parse.empty()) {
+ // Get the current context we are decoding within
+ auto [cur_context, n, k] = to_parse.back();
+ to_parse.pop_back();
+
+ switch (cur_context) {
+ case ParseContext::WRAPPED_EXPR: {
+ int colon_index = -1;
+ for (int i = 1; i < (int)in.size(); ++i) {
+ if (in[i] == ':') {
+ colon_index = i;
+ break;
+ }
+ if (in[i] < 'a' || in[i] > 'z') break;
+ }
+ // If there is no colon, this loop won't execute
+ for (int j = 0; j < colon_index; ++j) {
+ if (in[j] == 'a') {
+ to_parse.emplace_back(ParseContext::ALT, -1, -1);
+ } else if (in[j] == 's') {
+ to_parse.emplace_back(ParseContext::SWAP, -1, -1);
+ } else if (in[j] == 'c') {
+ to_parse.emplace_back(ParseContext::CHECK, -1, -1);
+ } else if (in[j] == 'd') {
+ to_parse.emplace_back(ParseContext::DUP_IF, -1, -1);
+ } else if (in[j] == 'j') {
+ to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1);
+ } else if (in[j] == 'n') {
+ to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1);
+ } else if (in[j] == 'v') {
+ to_parse.emplace_back(ParseContext::VERIFY, -1, -1);
+ } else if (in[j] == 'u') {
+ to_parse.emplace_back(ParseContext::WRAP_U, -1, -1);
+ } else if (in[j] == 't') {
+ to_parse.emplace_back(ParseContext::WRAP_T, -1, -1);
+ } else if (in[j] == 'l') {
+ // The l: wrapper is equivalent to or_i(0,X)
+ constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_0));
+ to_parse.emplace_back(ParseContext::OR_I, -1, -1);
+ } else {
+ return {};
+ }
+ }
+ to_parse.emplace_back(ParseContext::EXPR, -1, -1);
+ in = in.subspan(colon_index + 1);
+ break;
+ }
+ case ParseContext::EXPR: {
+ if (Const("0", in)) {
+ constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_0));
+ } else if (Const("1", in)) {
+ constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_1));
+ } else if (Const("pk(", in)) {
+ auto res = ParseKeyEnd<Key, Ctx>(in, ctx);
+ if (!res) return {};
+ auto& [key, key_size] = *res;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::WRAP_C, Vector(MakeNodeRef<Key>(Fragment::PK_K, Vector(std::move(key))))));
+ in = in.subspan(key_size + 1);
+ } else if (Const("pkh(", in)) {
+ auto res = ParseKeyEnd<Key>(in, ctx);
+ if (!res) return {};
+ auto& [key, key_size] = *res;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::WRAP_C, Vector(MakeNodeRef<Key>(Fragment::PK_H, Vector(std::move(key))))));
+ in = in.subspan(key_size + 1);
+ } else if (Const("pk_k(", in)) {
+ auto res = ParseKeyEnd<Key>(in, ctx);
+ if (!res) return {};
+ auto& [key, key_size] = *res;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::PK_K, Vector(std::move(key))));
+ in = in.subspan(key_size + 1);
+ } else if (Const("pk_h(", in)) {
+ auto res = ParseKeyEnd<Key>(in, ctx);
+ if (!res) return {};
+ auto& [key, key_size] = *res;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::PK_H, Vector(std::move(key))));
+ in = in.subspan(key_size + 1);
+ } else if (Const("sha256(", in)) {
+ auto res = ParseHexStrEnd(in, 32, ctx);
+ if (!res) return {};
+ auto& [hash, hash_size] = *res;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::SHA256, std::move(hash)));
+ in = in.subspan(hash_size + 1);
+ } else if (Const("ripemd160(", in)) {
+ auto res = ParseHexStrEnd(in, 20, ctx);
+ if (!res) return {};
+ auto& [hash, hash_size] = *res;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::RIPEMD160, std::move(hash)));
+ in = in.subspan(hash_size + 1);
+ } else if (Const("hash256(", in)) {
+ auto res = ParseHexStrEnd(in, 32, ctx);
+ if (!res) return {};
+ auto& [hash, hash_size] = *res;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::HASH256, std::move(hash)));
+ in = in.subspan(hash_size + 1);
+ } else if (Const("hash160(", in)) {
+ auto res = ParseHexStrEnd(in, 20, ctx);
+ if (!res) return {};
+ auto& [hash, hash_size] = *res;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::HASH160, std::move(hash)));
+ in = in.subspan(hash_size + 1);
+ } else if (Const("after(", in)) {
+ int arg_size = FindNextChar(in, ')');
+ if (arg_size < 1) return {};
+ int64_t num;
+ if (!ParseInt64(std::string(in.begin(), in.begin() + arg_size), &num)) return {};
+ if (num < 1 || num >= 0x80000000L) return {};
+ constructed.push_back(MakeNodeRef<Key>(Fragment::AFTER, num));
+ in = in.subspan(arg_size + 1);
+ } else if (Const("older(", in)) {
+ int arg_size = FindNextChar(in, ')');
+ if (arg_size < 1) return {};
+ int64_t num;
+ if (!ParseInt64(std::string(in.begin(), in.begin() + arg_size), &num)) return {};
+ if (num < 1 || num >= 0x80000000L) return {};
+ constructed.push_back(MakeNodeRef<Key>(Fragment::OLDER, num));
+ in = in.subspan(arg_size + 1);
+ } else if (Const("multi(", in)) {
+ // Get threshold
+ int next_comma = FindNextChar(in, ',');
+ if (next_comma < 1) return {};
+ if (!ParseInt64(std::string(in.begin(), in.begin() + next_comma), &k)) return {};
+ in = in.subspan(next_comma + 1);
+ // Get keys
+ std::vector<Key> keys;
+ while (next_comma != -1) {
+ Key key;
+ next_comma = FindNextChar(in, ',');
+ int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma;
+ if (key_length < 1) return {};
+ if (!ctx.FromString(in.begin(), in.begin() + key_length, key)) return {};
+ keys.push_back(std::move(key));
+ in = in.subspan(key_length + 1);
+ }
+ if (keys.size() < 1 || keys.size() > 20) return {};
+ if (k < 1 || k > (int64_t)keys.size()) return {};
+ constructed.push_back(MakeNodeRef<Key>(Fragment::MULTI, std::move(keys), k));
+ } else if (Const("thresh(", in)) {
+ int next_comma = FindNextChar(in, ',');
+ if (next_comma < 1) return {};
+ if (!ParseInt64(std::string(in.begin(), in.begin() + next_comma), &k)) return {};
+ if (k < 1) return {};
+ in = in.subspan(next_comma + 1);
+ // n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH
+ to_parse.emplace_back(ParseContext::THRESH, 1, k);
+ to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
+ } else if (Const("andor(", in)) {
+ to_parse.emplace_back(ParseContext::ANDOR, -1, -1);
+ to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
+ to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
+ to_parse.emplace_back(ParseContext::COMMA, -1, -1);
+ to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
+ to_parse.emplace_back(ParseContext::COMMA, -1, -1);
+ to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
+ } else {
+ if (Const("and_n(", in)) {
+ to_parse.emplace_back(ParseContext::AND_N, -1, -1);
+ } else if (Const("and_b(", in)) {
+ to_parse.emplace_back(ParseContext::AND_B, -1, -1);
+ } else if (Const("and_v(", in)) {
+ to_parse.emplace_back(ParseContext::AND_V, -1, -1);
+ } else if (Const("or_b(", in)) {
+ to_parse.emplace_back(ParseContext::OR_B, -1, -1);
+ } else if (Const("or_c(", in)) {
+ to_parse.emplace_back(ParseContext::OR_C, -1, -1);
+ } else if (Const("or_d(", in)) {
+ to_parse.emplace_back(ParseContext::OR_D, -1, -1);
+ } else if (Const("or_i(", in)) {
+ to_parse.emplace_back(ParseContext::OR_I, -1, -1);
+ } else {
+ return {};
+ }
+ to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
+ to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
+ to_parse.emplace_back(ParseContext::COMMA, -1, -1);
+ to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
+ }
+ break;
+ }
+ case ParseContext::ALT: {
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_A, Vector(std::move(constructed.back())));
+ break;
+ }
+ case ParseContext::SWAP: {
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_S, Vector(std::move(constructed.back())));
+ break;
+ }
+ case ParseContext::CHECK: {
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_C, Vector(std::move(constructed.back())));
+ break;
+ }
+ case ParseContext::DUP_IF: {
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_D, Vector(std::move(constructed.back())));
+ break;
+ }
+ case ParseContext::NON_ZERO: {
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_J, Vector(std::move(constructed.back())));
+ break;
+ }
+ case ParseContext::ZERO_NOTEQUAL: {
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_N, Vector(std::move(constructed.back())));
+ break;
+ }
+ case ParseContext::VERIFY: {
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_V, Vector(std::move(constructed.back())));
+ break;
+ }
+ case ParseContext::WRAP_U: {
+ constructed.back() = MakeNodeRef<Key>(Fragment::OR_I, Vector(std::move(constructed.back()), MakeNodeRef<Key>(Fragment::JUST_0)));
+ break;
+ }
+ case ParseContext::WRAP_T: {
+ constructed.back() = MakeNodeRef<Key>(Fragment::AND_V, Vector(std::move(constructed.back()), MakeNodeRef<Key>(Fragment::JUST_1)));
+ break;
+ }
+ case ParseContext::AND_B: {
+ BuildBack(Fragment::AND_B, constructed);
+ break;
+ }
+ case ParseContext::AND_N: {
+ auto mid = std::move(constructed.back());
+ constructed.pop_back();
+ constructed.back() = MakeNodeRef<Key>(Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), MakeNodeRef<Key>(Fragment::JUST_0)));
+ break;
+ }
+ case ParseContext::AND_V: {
+ BuildBack(Fragment::AND_V, constructed);
+ break;
+ }
+ case ParseContext::OR_B: {
+ BuildBack(Fragment::OR_B, constructed);
+ break;
+ }
+ case ParseContext::OR_C: {
+ BuildBack(Fragment::OR_C, constructed);
+ break;
+ }
+ case ParseContext::OR_D: {
+ BuildBack(Fragment::OR_D, constructed);
+ break;
+ }
+ case ParseContext::OR_I: {
+ BuildBack(Fragment::OR_I, constructed);
+ break;
+ }
+ case ParseContext::ANDOR: {
+ auto right = std::move(constructed.back());
+ constructed.pop_back();
+ auto mid = std::move(constructed.back());
+ constructed.pop_back();
+ constructed.back() = MakeNodeRef<Key>(Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right)));
+ break;
+ }
+ case ParseContext::THRESH: {
+ if (in.size() < 1) return {};
+ if (in[0] == ',') {
+ in = in.subspan(1);
+ to_parse.emplace_back(ParseContext::THRESH, n+1, k);
+ to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
+ } else if (in[0] == ')') {
+ if (k > n) return {};
+ in = in.subspan(1);
+ // Children are constructed in reverse order, so iterate from end to beginning
+ std::vector<NodeRef<Key>> subs;
+ for (int i = 0; i < n; ++i) {
+ subs.push_back(std::move(constructed.back()));
+ constructed.pop_back();
+ }
+ std::reverse(subs.begin(), subs.end());
+ constructed.push_back(MakeNodeRef<Key>(Fragment::THRESH, std::move(subs), k));
+ } else {
+ return {};
+ }
+ break;
+ }
+ case ParseContext::COMMA: {
+ if (in.size() < 1 || in[0] != ',') return {};
+ in = in.subspan(1);
+ break;
+ }
+ case ParseContext::CLOSE_BRACKET: {
+ if (in.size() < 1 || in[0] != ')') return {};
+ in = in.subspan(1);
+ break;
+ }
+ }
+ }
+
+ // Sanity checks on the produced miniscript
+ assert(constructed.size() == 1);
+ if (in.size() > 0) return {};
+ const NodeRef<Key> tl_node = std::move(constructed.front());
+ if (!tl_node->IsValidTopLevel()) return {};
+ return tl_node;
+}
+
+/** Decode a script into opcode/push pairs.
+ *
+ * Construct a vector with one element per opcode in the script, in reverse order.
+ * Each element is a pair consisting of the opcode, as well as the data pushed by
+ * the opcode (including OP_n), if any. OP_CHECKSIGVERIFY, OP_CHECKMULTISIGVERIFY,
+ * and OP_EQUALVERIFY are decomposed into OP_CHECKSIG, OP_CHECKMULTISIG, OP_EQUAL
+ * respectively, plus OP_VERIFY.
+ */
+bool DecomposeScript(const CScript& script, std::vector<std::pair<opcodetype, std::vector<unsigned char>>>& out);
+
+/** Determine whether the passed pair (created by DecomposeScript) is pushing a number. */
+bool ParseScriptNumber(const std::pair<opcodetype, std::vector<unsigned char>>& in, int64_t& k);
+
+enum class DecodeContext {
+ /** A single expression of type B, K, or V. Specifically, this can't be an
+ * and_v or an expression of type W (a: and s: wrappers). */
+ SINGLE_BKV_EXPR,
+ /** Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple)
+ * and_v expressions. Syntactic sugar for MAYBE_AND_V + SINGLE_BKV_EXPR. */
+ BKV_EXPR,
+ /** An expression of type W (a: or s: wrappers). */
+ W_EXPR,
+
+ /** SWAP expects the next element to be OP_SWAP (inside a W-type expression that
+ * didn't end with FROMALTSTACK), and wraps the top of the constructed stack
+ * with s: */
+ SWAP,
+ /** ALT expects the next element to be TOALTSTACK (we must have already read a
+ * FROMALTSTACK earlier), and wraps the top of the constructed stack with a: */
+ ALT,
+ /** CHECK wraps the top constructed node with c: */
+ CHECK,
+ /** DUP_IF wraps the top constructed node with d: */
+ DUP_IF,
+ /** VERIFY wraps the top constructed node with v: */
+ VERIFY,
+ /** NON_ZERO wraps the top constructed node with j: */
+ NON_ZERO,
+ /** ZERO_NOTEQUAL wraps the top constructed node with n: */
+ ZERO_NOTEQUAL,
+
+ /** MAYBE_AND_V will check if the next part of the script could be a valid
+ * miniscript sub-expression, and if so it will push AND_V and SINGLE_BKV_EXPR
+ * to decode it and construct the and_v node. This is recursive, to deal with
+ * multiple and_v nodes inside each other. */
+ MAYBE_AND_V,
+ /** AND_V will construct an and_v node from the last two constructed nodes. */
+ AND_V,
+ /** AND_B will construct an and_b node from the last two constructed nodes. */
+ AND_B,
+ /** ANDOR will construct an andor node from the last three constructed nodes. */
+ ANDOR,
+ /** OR_B will construct an or_b node from the last two constructed nodes. */
+ OR_B,
+ /** OR_C will construct an or_c node from the last two constructed nodes. */
+ OR_C,
+ /** OR_D will construct an or_d node from the last two constructed nodes. */
+ OR_D,
+
+ /** In a thresh expression, all sub-expressions other than the first are W-type,
+ * and end in OP_ADD. THRESH_W will check for this OP_ADD and either push a W_EXPR
+ * or a SINGLE_BKV_EXPR and jump to THRESH_E accordingly. */
+ THRESH_W,
+ /** THRESH_E constructs a thresh node from the appropriate number of constructed
+ * children. */
+ THRESH_E,
+
+ /** ENDIF signals that we are inside some sort of OP_IF structure, which could be
+ * or_d, or_c, or_i, andor, d:, or j: wrapper, depending on what follows. We read
+ * a BKV_EXPR and then deal with the next opcode case-by-case. */
+ ENDIF,
+ /** If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE,
+ * we could either be in an or_d or an or_c node. We then check for IFDUP to
+ * distinguish these cases. */
+ ENDIF_NOTIF,
+ /** If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an
+ * or_i or an andor node. Read the next BKV_EXPR and find either an OP_IF or an
+ * OP_NOTIF. */
+ ENDIF_ELSE,
+};
+
+//! Parse a miniscript from a bitcoin script
+template<typename Key, typename Ctx, typename I>
+inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx)
+{
+ // The two integers are used to hold state for thresh()
+ std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse;
+ std::vector<NodeRef<Key>> constructed;
+
+ // This is the top level, so we assume the type is B
+ // (in particular, disallowing top level W expressions)
+ to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
+
+ while (!to_parse.empty()) {
+ // Exit early if the Miniscript is not going to be valid.
+ if (!constructed.empty() && !constructed.back()->IsValid()) return {};
+
+ // Get the current context we are decoding within
+ auto [cur_context, n, k] = to_parse.back();
+ to_parse.pop_back();
+
+ switch(cur_context) {
+ case DecodeContext::SINGLE_BKV_EXPR: {
+ if (in >= last) return {};
+
+ // Constants
+ if (in[0].first == OP_1) {
+ ++in;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_1));
+ break;
+ }
+ if (in[0].first == OP_0) {
+ ++in;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_0));
+ break;
+ }
+ // Public keys
+ if (in[0].second.size() == 33) {
+ Key key;
+ if (!ctx.FromPKBytes(in[0].second.begin(), in[0].second.end(), key)) return {};
+ ++in;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::PK_K, Vector(std::move(key))));
+ break;
+ }
+ if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) {
+ Key key;
+ if (!ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end(), key)) return {};
+ in += 5;
+ constructed.push_back(MakeNodeRef<Key>(Fragment::PK_H, Vector(std::move(key))));
+ break;
+ }
+ // Time locks
+ if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && ParseScriptNumber(in[1], k)) {
+ in += 2;
+ if (k < 1 || k > 0x7FFFFFFFL) return {};
+ constructed.push_back(MakeNodeRef<Key>(Fragment::OLDER, k));
+ break;
+ }
+ if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && ParseScriptNumber(in[1], k)) {
+ in += 2;
+ if (k < 1 || k > 0x7FFFFFFFL) return {};
+ constructed.push_back(MakeNodeRef<Key>(Fragment::AFTER, k));
+ break;
+ }
+ // Hashes
+ if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && ParseScriptNumber(in[5], k) && k == 32 && in[6].first == OP_SIZE) {
+ if (in[2].first == OP_SHA256 && in[1].second.size() == 32) {
+ constructed.push_back(MakeNodeRef<Key>(Fragment::SHA256, in[1].second));
+ in += 7;
+ break;
+ } else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) {
+ constructed.push_back(MakeNodeRef<Key>(Fragment::RIPEMD160, in[1].second));
+ in += 7;
+ break;
+ } else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) {
+ constructed.push_back(MakeNodeRef<Key>(Fragment::HASH256, in[1].second));
+ in += 7;
+ break;
+ } else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) {
+ constructed.push_back(MakeNodeRef<Key>(Fragment::HASH160, in[1].second));
+ in += 7;
+ break;
+ }
+ }
+ // Multi
+ if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) {
+ std::vector<Key> keys;
+ if (!ParseScriptNumber(in[1], n)) return {};
+ if (last - in < 3 + n) return {};
+ if (n < 1 || n > 20) return {};
+ for (int i = 0; i < n; ++i) {
+ Key key;
+ if (in[2 + i].second.size() != 33) return {};
+ if (!ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end(), key)) return {};
+ keys.push_back(std::move(key));
+ }
+ if (!ParseScriptNumber(in[2 + n], k)) return {};
+ if (k < 1 || k > n) return {};
+ in += 3 + n;
+ std::reverse(keys.begin(), keys.end());
+ constructed.push_back(MakeNodeRef<Key>(Fragment::MULTI, std::move(keys), k));
+ break;
+ }
+ /** In the following wrappers, we only need to push SINGLE_BKV_EXPR rather
+ * than BKV_EXPR, because and_v commutes with these wrappers. For example,
+ * c:and_v(X,Y) produces the same script as and_v(X,c:Y). */
+ // c: wrapper
+ if (in[0].first == OP_CHECKSIG) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::CHECK, -1, -1);
+ to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
+ break;
+ }
+ // v: wrapper
+ if (in[0].first == OP_VERIFY) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::VERIFY, -1, -1);
+ to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
+ break;
+ }
+ // n: wrapper
+ if (in[0].first == OP_0NOTEQUAL) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1);
+ to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
+ break;
+ }
+ // Thresh
+ if (last - in >= 3 && in[0].first == OP_EQUAL && ParseScriptNumber(in[1], k)) {
+ if (k < 1) return {};
+ in += 2;
+ to_parse.emplace_back(DecodeContext::THRESH_W, 0, k);
+ break;
+ }
+ // OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I
+ if (in[0].first == OP_ENDIF) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::ENDIF, -1, -1);
+ to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
+ break;
+ }
+ /** In and_b and or_b nodes, we only look for SINGLE_BKV_EXPR, because
+ * or_b(and_v(X,Y),Z) has script [X] [Y] [Z] OP_BOOLOR, the same as
+ * and_v(X,or_b(Y,Z)). In this example, the former of these is invalid as
+ * miniscript, while the latter is valid. So we leave the and_v "outside"
+ * while decoding. */
+ // and_b
+ if (in[0].first == OP_BOOLAND) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::AND_B, -1, -1);
+ to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
+ to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
+ break;
+ }
+ // or_b
+ if (in[0].first == OP_BOOLOR) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::OR_B, -1, -1);
+ to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
+ to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
+ break;
+ }
+ // Unrecognised expression
+ return {};
+ }
+ case DecodeContext::BKV_EXPR: {
+ to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1);
+ to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
+ break;
+ }
+ case DecodeContext::W_EXPR: {
+ // a: wrapper
+ if (in >= last) return {};
+ if (in[0].first == OP_FROMALTSTACK) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::ALT, -1, -1);
+ } else {
+ to_parse.emplace_back(DecodeContext::SWAP, -1, -1);
+ }
+ to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
+ break;
+ }
+ case DecodeContext::MAYBE_AND_V: {
+ // If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child
+ // These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node.
+ if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) {
+ to_parse.emplace_back(DecodeContext::AND_V, -1, -1);
+ // BKV_EXPR can contain more AND_V nodes
+ to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
+ }
+ break;
+ }
+ case DecodeContext::SWAP: {
+ if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {};
+ ++in;
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_S, Vector(std::move(constructed.back())));
+ break;
+ }
+ case DecodeContext::ALT: {
+ if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {};
+ ++in;
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_A, Vector(std::move(constructed.back())));
+ break;
+ }
+ case DecodeContext::CHECK: {
+ if (constructed.empty()) return {};
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_C, Vector(std::move(constructed.back())));
+ break;
+ }
+ case DecodeContext::DUP_IF: {
+ if (constructed.empty()) return {};
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_D, Vector(std::move(constructed.back())));
+ break;
+ }
+ case DecodeContext::VERIFY: {
+ if (constructed.empty()) return {};
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_V, Vector(std::move(constructed.back())));
+ break;
+ }
+ case DecodeContext::NON_ZERO: {
+ if (constructed.empty()) return {};
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_J, Vector(std::move(constructed.back())));
+ break;
+ }
+ case DecodeContext::ZERO_NOTEQUAL: {
+ if (constructed.empty()) return {};
+ constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_N, Vector(std::move(constructed.back())));
+ break;
+ }
+ case DecodeContext::AND_V: {
+ if (constructed.size() < 2) return {};
+ BuildBack(Fragment::AND_V, constructed, /*reverse=*/true);
+ break;
+ }
+ case DecodeContext::AND_B: {
+ if (constructed.size() < 2) return {};
+ BuildBack(Fragment::AND_B, constructed, /*reverse=*/true);
+ break;
+ }
+ case DecodeContext::OR_B: {
+ if (constructed.size() < 2) return {};
+ BuildBack(Fragment::OR_B, constructed, /*reverse=*/true);
+ break;
+ }
+ case DecodeContext::OR_C: {
+ if (constructed.size() < 2) return {};
+ BuildBack(Fragment::OR_C, constructed, /*reverse=*/true);
+ break;
+ }
+ case DecodeContext::OR_D: {
+ if (constructed.size() < 2) return {};
+ BuildBack(Fragment::OR_D, constructed, /*reverse=*/true);
+ break;
+ }
+ case DecodeContext::ANDOR: {
+ if (constructed.size() < 3) return {};
+ NodeRef<Key> left = std::move(constructed.back());
+ constructed.pop_back();
+ NodeRef<Key> right = std::move(constructed.back());
+ constructed.pop_back();
+ NodeRef<Key> mid = std::move(constructed.back());
+ constructed.back() = MakeNodeRef<Key>(Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right)));
+ break;
+ }
+ case DecodeContext::THRESH_W: {
+ if (in >= last) return {};
+ if (in[0].first == OP_ADD) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k);
+ to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
+ } else {
+ to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k);
+ // All children of thresh have type modifier d, so cannot be and_v
+ to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
+ }
+ break;
+ }
+ case DecodeContext::THRESH_E: {
+ if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {};
+ std::vector<NodeRef<Key>> subs;
+ for (int i = 0; i < n; ++i) {
+ NodeRef<Key> sub = std::move(constructed.back());
+ constructed.pop_back();
+ subs.push_back(std::move(sub));
+ }
+ constructed.push_back(MakeNodeRef<Key>(Fragment::THRESH, std::move(subs), k));
+ break;
+ }
+ case DecodeContext::ENDIF: {
+ if (in >= last) return {};
+
+ // could be andor or or_i
+ if (in[0].first == OP_ELSE) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1);
+ to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
+ }
+ // could be j: or d: wrapper
+ else if (in[0].first == OP_IF) {
+ if (last - in >= 2 && in[1].first == OP_DUP) {
+ in += 2;
+ to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1);
+ } else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) {
+ in += 3;
+ to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1);
+ }
+ else {
+ return {};
+ }
+ // could be or_c or or_d
+ } else if (in[0].first == OP_NOTIF) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1);
+ }
+ else {
+ return {};
+ }
+ break;
+ }
+ case DecodeContext::ENDIF_NOTIF: {
+ if (in >= last) return {};
+ if (in[0].first == OP_IFDUP) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::OR_D, -1, -1);
+ } else {
+ to_parse.emplace_back(DecodeContext::OR_C, -1, -1);
+ }
+ // or_c and or_d both require X to have type modifier d so, can't contain and_v
+ to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
+ break;
+ }
+ case DecodeContext::ENDIF_ELSE: {
+ if (in >= last) return {};
+ if (in[0].first == OP_IF) {
+ ++in;
+ BuildBack(Fragment::OR_I, constructed, /*reverse=*/true);
+ } else if (in[0].first == OP_NOTIF) {
+ ++in;
+ to_parse.emplace_back(DecodeContext::ANDOR, -1, -1);
+ // andor requires X to have type modifier d, so it can't be and_v
+ to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
+ } else {
+ return {};
+ }
+ break;
+ }
+ }
+ }
+ if (constructed.size() != 1) return {};
+ const NodeRef<Key> tl_node = std::move(constructed.front());
+ // Note that due to how ComputeType works (only assign the type to the node if the
+ // subs' types are valid) this would fail if any node of tree is badly typed.
+ if (!tl_node->IsValidTopLevel()) return {};
+ return tl_node;
+}
+
+} // namespace internal
+
+template<typename Ctx>
+inline NodeRef<typename Ctx::Key> FromString(const std::string& str, const Ctx& ctx) {
+ return internal::Parse<typename Ctx::Key>(str, ctx);
+}
+
+template<typename Ctx>
+inline NodeRef<typename Ctx::Key> FromScript(const CScript& script, const Ctx& ctx) {
+ using namespace internal;
+ std::vector<std::pair<opcodetype, std::vector<unsigned char>>> decomposed;
+ if (!DecomposeScript(script, decomposed)) return {};
+ auto it = decomposed.begin();
+ auto ret = DecodeScript<typename Ctx::Key>(it, decomposed.end(), ctx);
+ if (!ret) return {};
+ if (it != decomposed.end()) return {};
+ return ret;
+}
+
+} // namespace miniscript
+
+#endif // BITCOIN_SCRIPT_MINISCRIPT_H