diff options
Diffstat (limited to 'src/script/miniscript.h')
-rw-r--r-- | src/script/miniscript.h | 341 |
1 files changed, 339 insertions, 2 deletions
diff --git a/src/script/miniscript.h b/src/script/miniscript.h index fa3b0350e9..7c1a87a7dc 100644 --- a/src/script/miniscript.h +++ b/src/script/miniscript.h @@ -223,6 +223,11 @@ enum class Fragment { // WRAP_U(X) is represented as OR_I(X,0) }; +enum class Availability { + NO, + YES, + MAYBE, +}; namespace internal { @@ -235,6 +240,62 @@ size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_ //! A helper sanitizer/checker for the output of CalcType. Type SanitizeType(Type x); +//! An object representing a sequence of witness stack elements. +struct InputStack { + /** Whether this stack is valid for its intended purpose (satisfaction or dissatisfaction of a Node). + * The MAYBE value is used for size estimation, when keys/preimages may actually be unavailable, + * but may be available at signing time. This makes the InputStack structure and signing logic, + * filled with dummy signatures/preimages usable for witness size estimation. + */ + Availability available = Availability::YES; + //! Whether this stack contains a digital signature. + bool has_sig = false; + //! Whether this stack is malleable (can be turned into an equally valid other stack by a third party). + bool malleable = false; + //! Whether this stack is non-canonical (using a construction known to be unnecessary for satisfaction). + //! Note that this flag does not affect the satisfaction algorithm; it is only used for sanity checking. + bool non_canon = false; + //! Serialized witness size. + size_t size = 0; + //! Data elements. + std::vector<std::vector<unsigned char>> stack; + //! Construct an empty stack (valid). + InputStack() {} + //! Construct a valid single-element stack (with an element up to 75 bytes). + InputStack(std::vector<unsigned char> in) : size(in.size() + 1), stack(Vector(std::move(in))) {} + //! Change availability + InputStack& SetAvailable(Availability avail); + //! Mark this input stack as having a signature. + InputStack& SetWithSig(); + //! Mark this input stack as non-canonical (known to not be necessary in non-malleable satisfactions). + InputStack& SetNonCanon(); + //! Mark this input stack as malleable. + InputStack& SetMalleable(bool x = true); + //! Concatenate two input stacks. + friend InputStack operator+(InputStack a, InputStack b); + //! Choose between two potential input stacks. + friend InputStack operator|(InputStack a, InputStack b); +}; + +/** A stack consisting of a single zero-length element (interpreted as 0 by the script interpreter in numeric context). */ +static const auto ZERO = InputStack(std::vector<unsigned char>()); +/** A stack consisting of a single malleable 32-byte 0x0000...0000 element (for dissatisfying hash challenges). */ +static const auto ZERO32 = InputStack(std::vector<unsigned char>(32, 0)).SetMalleable(); +/** A stack consisting of a single 0x01 element (interpreted as 1 by the script interpreted in numeric context). */ +static const auto ONE = InputStack(Vector((unsigned char)1)); +/** The empty stack. */ +static const auto EMPTY = InputStack(); +/** A stack representing the lack of any (dis)satisfactions. */ +static const auto INVALID = InputStack().SetAvailable(Availability::NO); + +//! A pair of a satisfaction and a dissatisfaction InputStack. +struct InputResult { + InputStack nsat, sat; + + template<typename A, typename B> + InputResult(A&& in_nsat, B&& in_sat) : nsat(std::forward<A>(in_nsat)), sat(std::forward<B>(in_sat)) {} +}; + //! Class whose objects represent the maximum of a list of integers. template<typename I> struct MaxInt { @@ -785,6 +846,226 @@ private: assert(false); } + template<typename Ctx> + internal::InputResult ProduceInput(const Ctx& ctx) const { + using namespace internal; + + // Internal function which is invoked for every tree node, constructing satisfaction/dissatisfactions + // given those of its subnodes. + auto helper = [&ctx](const Node& node, Span<InputResult> subres) -> InputResult { + switch (node.fragment) { + case Fragment::PK_K: { + std::vector<unsigned char> sig; + Availability avail = ctx.Sign(node.keys[0], sig); + return {ZERO, InputStack(std::move(sig)).SetWithSig().SetAvailable(avail)}; + } + case Fragment::PK_H: { + std::vector<unsigned char> key = ctx.ToPKBytes(node.keys[0]), sig; + Availability avail = ctx.Sign(node.keys[0], sig); + return {ZERO + InputStack(key), (InputStack(std::move(sig)).SetWithSig() + InputStack(key)).SetAvailable(avail)}; + } + case Fragment::MULTI: { + // sats[j] represents the best stack containing j valid signatures (out of the first i keys). + // In the loop below, these stacks are built up using a dynamic programming approach. + // sats[0] starts off being {0}, due to the CHECKMULTISIG bug that pops off one element too many. + std::vector<InputStack> sats = Vector(ZERO); + for (size_t i = 0; i < node.keys.size(); ++i) { + std::vector<unsigned char> sig; + Availability avail = ctx.Sign(node.keys[i], sig); + // Compute signature stack for just the i'th key. + auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail); + // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further + // next_sats[j] are equal to either the existing sats[j], or sats[j-1] plus a signature for the + // current (i'th) key. The very last element needs all signatures filled. + std::vector<InputStack> next_sats; + next_sats.push_back(sats[0]); + for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back(sats[j] | (std::move(sats[j - 1]) + sat)); + next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat)); + // Switch over. + sats = std::move(next_sats); + } + // The dissatisfaction consists of k+1 stack elements all equal to 0. + InputStack nsat = ZERO; + for (size_t i = 0; i < node.k; ++i) nsat = std::move(nsat) + ZERO; + assert(node.k <= sats.size()); + return {std::move(nsat), std::move(sats[node.k])}; + } + case Fragment::THRESH: { + // sats[k] represents the best stack that satisfies k out of the *last* i subexpressions. + // In the loop below, these stacks are built up using a dynamic programming approach. + // sats[0] starts off empty. + std::vector<InputStack> sats = Vector(EMPTY); + for (size_t i = 0; i < subres.size(); ++i) { + // Introduce an alias for the i'th last satisfaction/dissatisfaction. + auto& res = subres[subres.size() - i - 1]; + // Compute the next sats vector: next_sats[0] is sats[0] plus res.nsat (thus containing all dissatisfactions + // so far. next_sats[j] is either sats[j] + res.nsat (reusing j earlier satisfactions) or sats[j-1] + res.sat + // (reusing j-1 earlier satisfactions plus a new one). The very last next_sats[j] is all satisfactions. + std::vector<InputStack> next_sats; + next_sats.push_back(sats[0] + res.nsat); + for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + res.nsat) | (std::move(sats[j - 1]) + res.sat)); + next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(res.sat)); + // Switch over. + sats = std::move(next_sats); + } + // At this point, sats[k].sat is the best satisfaction for the overall thresh() node. The best dissatisfaction + // is computed by gathering all sats[i].nsat for i != k. + InputStack nsat = INVALID; + for (size_t i = 0; i < sats.size(); ++i) { + // i==k is the satisfaction; i==0 is the canonical dissatisfaction; + // the rest are non-canonical (a no-signature dissatisfaction - the i=0 + // form - is always available) and malleable (due to overcompleteness). + // Marking the solutions malleable here is not strictly necessary, as they + // should already never be picked in non-malleable solutions due to the + // availability of the i=0 form. + if (i != 0 && i != node.k) sats[i].SetMalleable().SetNonCanon(); + // Include all dissatisfactions (even these non-canonical ones) in nsat. + if (i != node.k) nsat = std::move(nsat) | std::move(sats[i]); + } + assert(node.k <= sats.size()); + return {std::move(nsat), std::move(sats[node.k])}; + } + case Fragment::OLDER: { + return {INVALID, ctx.CheckOlder(node.k) ? EMPTY : INVALID}; + } + case Fragment::AFTER: { + return {INVALID, ctx.CheckAfter(node.k) ? EMPTY : INVALID}; + } + case Fragment::SHA256: { + std::vector<unsigned char> preimage; + Availability avail = ctx.SatSHA256(node.data, preimage); + return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)}; + } + case Fragment::RIPEMD160: { + std::vector<unsigned char> preimage; + Availability avail = ctx.SatRIPEMD160(node.data, preimage); + return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)}; + } + case Fragment::HASH256: { + std::vector<unsigned char> preimage; + Availability avail = ctx.SatHASH256(node.data, preimage); + return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)}; + } + case Fragment::HASH160: { + std::vector<unsigned char> preimage; + Availability avail = ctx.SatHASH160(node.data, preimage); + return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)}; + } + case Fragment::AND_V: { + auto& x = subres[0], &y = subres[1]; + // As the dissatisfaction here only consist of a single option, it doesn't + // actually need to be listed (it's not required for reasoning about malleability of + // other options), and is never required (no valid miniscript relies on the ability + // to satisfy the type V left subexpression). It's still listed here for + // completeness, as a hypothetical (not currently implemented) satisfier that doesn't + // care about malleability might in some cases prefer it still. + return {(y.nsat + x.sat).SetNonCanon(), y.sat + x.sat}; + } + case Fragment::AND_B: { + auto& x = subres[0], &y = subres[1]; + // Note that it is not strictly necessary to mark the 2nd and 3rd dissatisfaction here + // as malleable. While they are definitely malleable, they are also non-canonical due + // to the guaranteed existence of a no-signature other dissatisfaction (the 1st) + // option. Because of that, the 2nd and 3rd option will never be chosen, even if they + // weren't marked as malleable. + return {(y.nsat + x.nsat) | (y.sat + x.nsat).SetMalleable().SetNonCanon() | (y.nsat + x.sat).SetMalleable().SetNonCanon(), y.sat + x.sat}; + } + case Fragment::OR_B: { + auto& x = subres[0], &z = subres[1]; + // The (sat(Z) sat(X)) solution is overcomplete (attacker can change either into dsat). + return {z.nsat + x.nsat, (z.nsat + x.sat) | (z.sat + x.nsat) | (z.sat + x.sat).SetMalleable().SetNonCanon()}; + } + case Fragment::OR_C: { + auto& x = subres[0], &z = subres[1]; + return {INVALID, std::move(x.sat) | (z.sat + x.nsat)}; + } + case Fragment::OR_D: { + auto& x = subres[0], &z = subres[1]; + return {z.nsat + x.nsat, std::move(x.sat) | (z.sat + x.nsat)}; + } + case Fragment::OR_I: { + auto& x = subres[0], &z = subres[1]; + return {(x.nsat + ONE) | (z.nsat + ZERO), (x.sat + ONE) | (z.sat + ZERO)}; + } + case Fragment::ANDOR: { + auto& x = subres[0], &y = subres[1], &z = subres[2]; + return {(y.nsat + x.sat).SetNonCanon() | (z.nsat + x.nsat), (y.sat + x.sat) | (z.sat + x.nsat)}; + } + case Fragment::WRAP_A: + case Fragment::WRAP_S: + case Fragment::WRAP_C: + case Fragment::WRAP_N: + return std::move(subres[0]); + case Fragment::WRAP_D: { + auto &x = subres[0]; + return {ZERO, x.sat + ONE}; + } + case Fragment::WRAP_J: { + auto &x = subres[0]; + // If a dissatisfaction with a nonzero top stack element exists, an alternative dissatisfaction exists. + // As the dissatisfaction logic currently doesn't keep track of this nonzeroness property, and thus even + // if a dissatisfaction with a top zero element is found, we don't know whether another one with a + // nonzero top stack element exists. Make the conservative assumption that whenever the subexpression is weakly + // dissatisfiable, this alternative dissatisfaction exists and leads to malleability. + return {InputStack(ZERO).SetMalleable(x.nsat.available != Availability::NO && !x.nsat.has_sig), std::move(x.sat)}; + } + case Fragment::WRAP_V: { + auto &x = subres[0]; + return {INVALID, std::move(x.sat)}; + } + case Fragment::JUST_0: return {EMPTY, INVALID}; + case Fragment::JUST_1: return {INVALID, EMPTY}; + } + assert(false); + return {INVALID, INVALID}; + }; + + auto tester = [&helper](const Node& node, Span<InputResult> subres) -> InputResult { + auto ret = helper(node, subres); + + // Do a consistency check between the satisfaction code and the type checker + // (the actual satisfaction code in ProduceInputHelper does not use GetType) + + // For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0. + if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 0); + if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 0); + + // For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1. + if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 1); + if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 1); + + // For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions, + // the top element cannot be 0. + if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() >= 1); + if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() >= 1); + if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.stack.back().empty()); + + // For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable, + // it must be canonical. + if (node.GetType() << "d"_mst) assert(ret.nsat.available != Availability::NO); + if (node.GetType() << "d"_mst) assert(!ret.nsat.has_sig); + if (node.GetType() << "d"_mst && !ret.nsat.malleable) assert(!ret.nsat.non_canon); + + // For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature. + if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.has_sig); + if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) assert(ret.sat.has_sig); + + // For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist. + if (node.GetType() << "me"_mst) assert(ret.nsat.available != Availability::NO); + if (node.GetType() << "me"_mst) assert(!ret.nsat.malleable); + + // For 'm' nodes, if a satisfaction exists, it must be non-malleable. + if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.malleable); + + // If a non-malleable satisfaction exists, it must be canonical. + if (ret.sat.available != Availability::NO && !ret.sat.malleable) assert(!ret.sat.non_canon); + + return ret; + }; + + return TreeEval<InputResult>(tester); + } + public: /** Update duplicate key information in this Node. * @@ -855,6 +1136,9 @@ public: //! Return the maximum number of ops needed to satisfy this script non-malleably. uint32_t GetOps() const { return ops.count + ops.sat.value; } + //! Return the number of ops in the script (not counting the dynamic ones that depend on execution). + uint32_t GetStaticOps() const { return ops.count; } + //! Check the ops limit of this script against the consensus limit. bool CheckOpsLimit() const { return GetOps() <= MAX_OPS_PER_SCRIPT; } @@ -877,6 +1161,47 @@ public: }); } + //! Determine whether a Miniscript node is satisfiable. fn(node) will be invoked for all + //! key, time, and hashing nodes, and should return their satisfiability. + template<typename F> + bool IsSatisfiable(F fn) const + { + // TreeEval() doesn't support bool as NodeType, so use int instead. + return TreeEval<int>([&fn](const Node& node, Span<int> subs) -> bool { + switch (node.fragment) { + case Fragment::JUST_0: + return false; + case Fragment::JUST_1: + return true; + case Fragment::PK_K: + case Fragment::PK_H: + case Fragment::MULTI: + case Fragment::AFTER: + case Fragment::OLDER: + case Fragment::HASH256: + case Fragment::HASH160: + case Fragment::SHA256: + case Fragment::RIPEMD160: + return bool{fn(node)}; + case Fragment::ANDOR: + return (subs[0] && subs[1]) || subs[2]; + case Fragment::AND_V: + case Fragment::AND_B: + return subs[0] && subs[1]; + case Fragment::OR_B: + case Fragment::OR_C: + case Fragment::OR_D: + case Fragment::OR_I: + return subs[0] || subs[1]; + case Fragment::THRESH: + return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k; + default: // wrappers + assert(subs.size() == 1); + return subs[0]; + } + }); + } + //! Check whether this node is valid at all. bool IsValid() const { return !(GetType() == ""_mst) && ScriptSize() <= MAX_STANDARD_P2WSH_SCRIPT_SIZE; } @@ -904,6 +1229,18 @@ public: //! Check whether this node is safe as a script on its own. bool IsSane() const { return IsValidTopLevel() && IsSaneSubexpression() && NeedsSignature(); } + //! Produce a witness for this script, if possible and given the information available in the context. + //! The non-malleable satisfaction is guaranteed to be valid if it exists, and ValidSatisfaction() + //! is true. If IsSane() holds, this satisfaction is guaranteed to succeed in case the node's + //! conditions are satisfied (private keys and hash preimages available, locktimes satsified). + template<typename Ctx> + Availability Satisfy(const Ctx& ctx, std::vector<std::vector<unsigned char>>& stack, bool nonmalleable = true) const { + auto ret = ProduceInput(ctx); + if (nonmalleable && (ret.sat.malleable || !ret.sat.has_sig)) return Availability::NO; + stack = std::move(ret.sat.stack); + return ret.sat.available; + } + //! Equality testing. bool operator==(const Node<Key>& arg) const { return Compare(*this, arg) == 0; } @@ -1378,7 +1715,7 @@ inline NodeRef<Key> Parse(Span<const char> in, const Ctx& ctx) assert(constructed.size() == 1); assert(constructed[0]->ScriptSize() == script_size); if (in.size() > 0) return {}; - const NodeRef<Key> tl_node = std::move(constructed.front()); + NodeRef<Key> tl_node = std::move(constructed.front()); tl_node->DuplicateKeyCheck(ctx); return tl_node; } @@ -1813,7 +2150,7 @@ inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx) } } if (constructed.size() != 1) return {}; - const NodeRef<Key> tl_node = std::move(constructed.front()); + NodeRef<Key> tl_node = std::move(constructed.front()); tl_node->DuplicateKeyCheck(ctx); // Note that due to how ComputeType works (only assign the type to the node if the // subs' types are valid) this would fail if any node of tree is badly typed. |