aboutsummaryrefslogtreecommitdiff
path: root/src/scheduler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/scheduler.cpp')
-rw-r--r--src/scheduler.cpp213
1 files changed, 213 insertions, 0 deletions
diff --git a/src/scheduler.cpp b/src/scheduler.cpp
new file mode 100644
index 0000000000..a94f6b2a66
--- /dev/null
+++ b/src/scheduler.cpp
@@ -0,0 +1,213 @@
+// Copyright (c) 2015-2017 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#include <scheduler.h>
+
+#include <random.h>
+#include <reverselock.h>
+
+#include <assert.h>
+#include <boost/bind.hpp>
+#include <utility>
+
+CScheduler::CScheduler() : nThreadsServicingQueue(0), stopRequested(false), stopWhenEmpty(false)
+{
+}
+
+CScheduler::~CScheduler()
+{
+ assert(nThreadsServicingQueue == 0);
+}
+
+
+#if BOOST_VERSION < 105000
+static boost::system_time toPosixTime(const boost::chrono::system_clock::time_point& t)
+{
+ // Creating the posix_time using from_time_t loses sub-second precision. So rather than exporting the time_point to time_t,
+ // start with a posix_time at the epoch (0) and add the milliseconds that have passed since then.
+ return boost::posix_time::from_time_t(0) + boost::posix_time::milliseconds(boost::chrono::duration_cast<boost::chrono::milliseconds>(t.time_since_epoch()).count());
+}
+#endif
+
+void CScheduler::serviceQueue()
+{
+ boost::unique_lock<boost::mutex> lock(newTaskMutex);
+ ++nThreadsServicingQueue;
+
+ // newTaskMutex is locked throughout this loop EXCEPT
+ // when the thread is waiting or when the user's function
+ // is called.
+ while (!shouldStop()) {
+ try {
+ if (!shouldStop() && taskQueue.empty()) {
+ reverse_lock<boost::unique_lock<boost::mutex> > rlock(lock);
+ // Use this chance to get a tiny bit more entropy
+ RandAddSeedSleep();
+ }
+ while (!shouldStop() && taskQueue.empty()) {
+ // Wait until there is something to do.
+ newTaskScheduled.wait(lock);
+ }
+
+ // Wait until either there is a new task, or until
+ // the time of the first item on the queue:
+
+// wait_until needs boost 1.50 or later; older versions have timed_wait:
+#if BOOST_VERSION < 105000
+ while (!shouldStop() && !taskQueue.empty() &&
+ newTaskScheduled.timed_wait(lock, toPosixTime(taskQueue.begin()->first))) {
+ // Keep waiting until timeout
+ }
+#else
+ // Some boost versions have a conflicting overload of wait_until that returns void.
+ // Explicitly use a template here to avoid hitting that overload.
+ while (!shouldStop() && !taskQueue.empty()) {
+ boost::chrono::system_clock::time_point timeToWaitFor = taskQueue.begin()->first;
+ if (newTaskScheduled.wait_until<>(lock, timeToWaitFor) == boost::cv_status::timeout)
+ break; // Exit loop after timeout, it means we reached the time of the event
+ }
+#endif
+ // If there are multiple threads, the queue can empty while we're waiting (another
+ // thread may service the task we were waiting on).
+ if (shouldStop() || taskQueue.empty())
+ continue;
+
+ Function f = taskQueue.begin()->second;
+ taskQueue.erase(taskQueue.begin());
+
+ {
+ // Unlock before calling f, so it can reschedule itself or another task
+ // without deadlocking:
+ reverse_lock<boost::unique_lock<boost::mutex> > rlock(lock);
+ f();
+ }
+ } catch (...) {
+ --nThreadsServicingQueue;
+ throw;
+ }
+ }
+ --nThreadsServicingQueue;
+ newTaskScheduled.notify_one();
+}
+
+void CScheduler::stop(bool drain)
+{
+ {
+ boost::unique_lock<boost::mutex> lock(newTaskMutex);
+ if (drain)
+ stopWhenEmpty = true;
+ else
+ stopRequested = true;
+ }
+ newTaskScheduled.notify_all();
+}
+
+void CScheduler::schedule(CScheduler::Function f, boost::chrono::system_clock::time_point t)
+{
+ {
+ boost::unique_lock<boost::mutex> lock(newTaskMutex);
+ taskQueue.insert(std::make_pair(t, f));
+ }
+ newTaskScheduled.notify_one();
+}
+
+void CScheduler::scheduleFromNow(CScheduler::Function f, int64_t deltaMilliSeconds)
+{
+ schedule(f, boost::chrono::system_clock::now() + boost::chrono::milliseconds(deltaMilliSeconds));
+}
+
+static void Repeat(CScheduler* s, CScheduler::Function f, int64_t deltaMilliSeconds)
+{
+ f();
+ s->scheduleFromNow(boost::bind(&Repeat, s, f, deltaMilliSeconds), deltaMilliSeconds);
+}
+
+void CScheduler::scheduleEvery(CScheduler::Function f, int64_t deltaMilliSeconds)
+{
+ scheduleFromNow(boost::bind(&Repeat, this, f, deltaMilliSeconds), deltaMilliSeconds);
+}
+
+size_t CScheduler::getQueueInfo(boost::chrono::system_clock::time_point &first,
+ boost::chrono::system_clock::time_point &last) const
+{
+ boost::unique_lock<boost::mutex> lock(newTaskMutex);
+ size_t result = taskQueue.size();
+ if (!taskQueue.empty()) {
+ first = taskQueue.begin()->first;
+ last = taskQueue.rbegin()->first;
+ }
+ return result;
+}
+
+bool CScheduler::AreThreadsServicingQueue() const {
+ boost::unique_lock<boost::mutex> lock(newTaskMutex);
+ return nThreadsServicingQueue;
+}
+
+
+void SingleThreadedSchedulerClient::MaybeScheduleProcessQueue() {
+ {
+ LOCK(m_cs_callbacks_pending);
+ // Try to avoid scheduling too many copies here, but if we
+ // accidentally have two ProcessQueue's scheduled at once its
+ // not a big deal.
+ if (m_are_callbacks_running) return;
+ if (m_callbacks_pending.empty()) return;
+ }
+ m_pscheduler->schedule(std::bind(&SingleThreadedSchedulerClient::ProcessQueue, this));
+}
+
+void SingleThreadedSchedulerClient::ProcessQueue() {
+ std::function<void (void)> callback;
+ {
+ LOCK(m_cs_callbacks_pending);
+ if (m_are_callbacks_running) return;
+ if (m_callbacks_pending.empty()) return;
+ m_are_callbacks_running = true;
+
+ callback = std::move(m_callbacks_pending.front());
+ m_callbacks_pending.pop_front();
+ }
+
+ // RAII the setting of fCallbacksRunning and calling MaybeScheduleProcessQueue
+ // to ensure both happen safely even if callback() throws.
+ struct RAIICallbacksRunning {
+ SingleThreadedSchedulerClient* instance;
+ explicit RAIICallbacksRunning(SingleThreadedSchedulerClient* _instance) : instance(_instance) {}
+ ~RAIICallbacksRunning() {
+ {
+ LOCK(instance->m_cs_callbacks_pending);
+ instance->m_are_callbacks_running = false;
+ }
+ instance->MaybeScheduleProcessQueue();
+ }
+ } raiicallbacksrunning(this);
+
+ callback();
+}
+
+void SingleThreadedSchedulerClient::AddToProcessQueue(std::function<void (void)> func) {
+ assert(m_pscheduler);
+
+ {
+ LOCK(m_cs_callbacks_pending);
+ m_callbacks_pending.emplace_back(std::move(func));
+ }
+ MaybeScheduleProcessQueue();
+}
+
+void SingleThreadedSchedulerClient::EmptyQueue() {
+ assert(!m_pscheduler->AreThreadsServicingQueue());
+ bool should_continue = true;
+ while (should_continue) {
+ ProcessQueue();
+ LOCK(m_cs_callbacks_pending);
+ should_continue = !m_callbacks_pending.empty();
+ }
+}
+
+size_t SingleThreadedSchedulerClient::CallbacksPending() {
+ LOCK(m_cs_callbacks_pending);
+ return m_callbacks_pending.size();
+}