aboutsummaryrefslogtreecommitdiff
path: root/src/random.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/random.cpp')
-rw-r--r--src/random.cpp514
1 files changed, 385 insertions, 129 deletions
diff --git a/src/random.cpp b/src/random.cpp
index f8ffda136d..1aa78a9034 100644
--- a/src/random.cpp
+++ b/src/random.cpp
@@ -19,6 +19,8 @@
#include <chrono>
#include <thread>
+#include <support/allocators/secure.h>
+
#ifndef WIN32
#include <fcntl.h>
#include <sys/time.h>
@@ -47,6 +49,7 @@
#include <openssl/err.h>
#include <openssl/rand.h>
+#include <openssl/conf.h>
[[noreturn]] static void RandFailure()
{
@@ -54,7 +57,7 @@
std::abort();
}
-static inline int64_t GetPerformanceCounter()
+static inline int64_t GetPerformanceCounter() noexcept
{
// Read the hardware time stamp counter when available.
// See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information.
@@ -74,73 +77,168 @@ static inline int64_t GetPerformanceCounter()
#endif
}
-
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
-static std::atomic<bool> hwrand_initialized{false};
-static bool rdrand_supported = false;
+static bool g_rdrand_supported = false;
+static bool g_rdseed_supported = false;
static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000;
-static void RDRandInit()
+static constexpr uint32_t CPUID_F7_EBX_RDSEED = 0x00040000;
+#ifdef bit_RDRND
+static_assert(CPUID_F1_ECX_RDRAND == bit_RDRND, "Unexpected value for bit_RDRND");
+#endif
+#ifdef bit_RDSEED
+static_assert(CPUID_F7_EBX_RDSEED == bit_RDSEED, "Unexpected value for bit_RDSEED");
+#endif
+static void inline GetCPUID(uint32_t leaf, uint32_t subleaf, uint32_t& a, uint32_t& b, uint32_t& c, uint32_t& d)
+{
+ // We can't use __get_cpuid as it doesn't support subleafs.
+#ifdef __GNUC__
+ __cpuid_count(leaf, subleaf, a, b, c, d);
+#else
+ __asm__ ("cpuid" : "=a"(a), "=b"(b), "=c"(c), "=d"(d) : "0"(leaf), "2"(subleaf));
+#endif
+}
+
+static void InitHardwareRand()
{
uint32_t eax, ebx, ecx, edx;
- if (__get_cpuid(1, &eax, &ebx, &ecx, &edx) && (ecx & CPUID_F1_ECX_RDRAND)) {
+ GetCPUID(1, 0, eax, ebx, ecx, edx);
+ if (ecx & CPUID_F1_ECX_RDRAND) {
+ g_rdrand_supported = true;
+ }
+ GetCPUID(7, 0, eax, ebx, ecx, edx);
+ if (ebx & CPUID_F7_EBX_RDSEED) {
+ g_rdseed_supported = true;
+ }
+}
+
+static void ReportHardwareRand()
+{
+ // This must be done in a separate function, as HWRandInit() may be indirectly called
+ // from global constructors, before logging is initialized.
+ if (g_rdseed_supported) {
+ LogPrintf("Using RdSeed as additional entropy source\n");
+ }
+ if (g_rdrand_supported) {
LogPrintf("Using RdRand as an additional entropy source\n");
- rdrand_supported = true;
}
- hwrand_initialized.store(true);
}
+
+/** Read 64 bits of entropy using rdrand.
+ *
+ * Must only be called when RdRand is supported.
+ */
+static uint64_t GetRdRand() noexcept
+{
+ // RdRand may very rarely fail. Invoke it up to 10 times in a loop to reduce this risk.
+#ifdef __i386__
+ uint8_t ok;
+ uint32_t r1, r2;
+ for (int i = 0; i < 10; ++i) {
+ __asm__ volatile (".byte 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdrand %eax
+ if (ok) break;
+ }
+ for (int i = 0; i < 10; ++i) {
+ __asm__ volatile (".byte 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r2), "=q"(ok) :: "cc"); // rdrand %eax
+ if (ok) break;
+ }
+ return (((uint64_t)r2) << 32) | r1;
+#elif defined(__x86_64__) || defined(__amd64__)
+ uint8_t ok;
+ uint64_t r1;
+ for (int i = 0; i < 10; ++i) {
+ __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdrand %rax
+ if (ok) break;
+ }
+ return r1;
#else
-static void RDRandInit() {}
+#error "RdRand is only supported on x86 and x86_64"
#endif
+}
-static bool GetHWRand(unsigned char* ent32) {
-#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
- assert(hwrand_initialized.load(std::memory_order_relaxed));
- if (rdrand_supported) {
- uint8_t ok;
- // Not all assemblers support the rdrand instruction, write it in hex.
+/** Read 64 bits of entropy using rdseed.
+ *
+ * Must only be called when RdSeed is supported.
+ */
+static uint64_t GetRdSeed() noexcept
+{
+ // RdSeed may fail when the HW RNG is overloaded. Loop indefinitely until enough entropy is gathered,
+ // but pause after every failure.
#ifdef __i386__
- for (int iter = 0; iter < 4; ++iter) {
- uint32_t r1, r2;
- __asm__ volatile (".byte 0x0f, 0xc7, 0xf0;" // rdrand %eax
- ".byte 0x0f, 0xc7, 0xf2;" // rdrand %edx
- "setc %2" :
- "=a"(r1), "=d"(r2), "=q"(ok) :: "cc");
- if (!ok) return false;
- WriteLE32(ent32 + 8 * iter, r1);
- WriteLE32(ent32 + 8 * iter + 4, r2);
- }
+ uint8_t ok;
+ uint32_t r1, r2;
+ do {
+ __asm__ volatile (".byte 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdseed %eax
+ if (ok) break;
+ __asm__ volatile ("pause");
+ } while(true);
+ do {
+ __asm__ volatile (".byte 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r2), "=q"(ok) :: "cc"); // rdseed %eax
+ if (ok) break;
+ __asm__ volatile ("pause");
+ } while(true);
+ return (((uint64_t)r2) << 32) | r1;
+#elif defined(__x86_64__) || defined(__amd64__)
+ uint8_t ok;
+ uint64_t r1;
+ do {
+ __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdseed %rax
+ if (ok) break;
+ __asm__ volatile ("pause");
+ } while(true);
+ return r1;
#else
- uint64_t r1, r2, r3, r4;
- __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0, " // rdrand %rax
- "0x48, 0x0f, 0xc7, 0xf3, " // rdrand %rbx
- "0x48, 0x0f, 0xc7, 0xf1, " // rdrand %rcx
- "0x48, 0x0f, 0xc7, 0xf2; " // rdrand %rdx
- "setc %4" :
- "=a"(r1), "=b"(r2), "=c"(r3), "=d"(r4), "=q"(ok) :: "cc");
- if (!ok) return false;
- WriteLE64(ent32, r1);
- WriteLE64(ent32 + 8, r2);
- WriteLE64(ent32 + 16, r3);
- WriteLE64(ent32 + 24, r4);
+#error "RdSeed is only supported on x86 and x86_64"
+#endif
+}
+
+#else
+/* Access to other hardware random number generators could be added here later,
+ * assuming it is sufficiently fast (in the order of a few hundred CPU cycles).
+ * Slower sources should probably be invoked separately, and/or only from
+ * RandAddSeedSleep (which is called during idle background operation).
+ */
+static void InitHardwareRand() {}
+static void ReportHardwareRand() {}
#endif
- return true;
+
+/** Add 64 bits of entropy gathered from hardware to hasher. Do nothing if not supported. */
+static void SeedHardwareFast(CSHA512& hasher) noexcept {
+#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
+ if (g_rdrand_supported) {
+ uint64_t out = GetRdRand();
+ hasher.Write((const unsigned char*)&out, sizeof(out));
+ return;
}
#endif
- return false;
}
-void RandAddSeed()
-{
- // Seed with CPU performance counter
- int64_t nCounter = GetPerformanceCounter();
- RAND_add(&nCounter, sizeof(nCounter), 1.5);
- memory_cleanse((void*)&nCounter, sizeof(nCounter));
+/** Add 256 bits of entropy gathered from hardware to hasher. Do nothing if not supported. */
+static void SeedHardwareSlow(CSHA512& hasher) noexcept {
+#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
+ // When we want 256 bits of entropy, prefer RdSeed over RdRand, as it's
+ // guaranteed to produce independent randomness on every call.
+ if (g_rdseed_supported) {
+ for (int i = 0; i < 4; ++i) {
+ uint64_t out = GetRdSeed();
+ hasher.Write((const unsigned char*)&out, sizeof(out));
+ }
+ return;
+ }
+ // When falling back to RdRand, XOR the result of 1024 results.
+ // This guarantees a reseeding occurs between each.
+ if (g_rdrand_supported) {
+ for (int i = 0; i < 4; ++i) {
+ uint64_t out = 0;
+ for (int j = 0; j < 1024; ++j) out ^= GetRdRand();
+ hasher.Write((const unsigned char*)&out, sizeof(out));
+ }
+ return;
+ }
+#endif
}
-static void RandAddSeedPerfmon()
+static void RandAddSeedPerfmon(CSHA512& hasher)
{
- RandAddSeed();
-
#ifdef WIN32
// Don't need this on Linux, OpenSSL automatically uses /dev/urandom
// Seed with the entire set of perfmon data
@@ -164,15 +262,15 @@ static void RandAddSeedPerfmon()
}
RegCloseKey(HKEY_PERFORMANCE_DATA);
if (ret == ERROR_SUCCESS) {
- RAND_add(vData.data(), nSize, nSize / 100.0);
+ hasher.Write(vData.data(), nSize);
memory_cleanse(vData.data(), nSize);
- LogPrint(BCLog::RAND, "%s: %lu bytes\n", __func__, nSize);
} else {
- static bool warned = false; // Warn only once
- if (!warned) {
- LogPrintf("%s: Warning: RegQueryValueExA(HKEY_PERFORMANCE_DATA) failed with code %i\n", __func__, ret);
- warned = true;
- }
+ // Performance data is only a best-effort attempt at improving the
+ // situation when the OS randomness (and other sources) aren't
+ // adequate. As a result, failure to read it is isn't considered critical,
+ // so we don't call RandFailure().
+ // TODO: Add logging when the logger is made functional before global
+ // constructors have been invoked.
}
#endif
}
@@ -272,106 +370,259 @@ void GetOSRand(unsigned char *ent32)
#endif
}
-void GetRandBytes(unsigned char* buf, int num)
+void LockingCallbackOpenSSL(int mode, int i, const char* file, int line);
+
+namespace {
+
+class RNGState {
+ Mutex m_mutex;
+ /* The RNG state consists of 256 bits of entropy, taken from the output of
+ * one operation's SHA512 output, and fed as input to the next one.
+ * Carrying 256 bits of entropy should be sufficient to guarantee
+ * unpredictability as long as any entropy source was ever unpredictable
+ * to an attacker. To protect against situations where an attacker might
+ * observe the RNG's state, fresh entropy is always mixed when
+ * GetStrongRandBytes is called.
+ */
+ unsigned char m_state[32] GUARDED_BY(m_mutex) = {0};
+ uint64_t m_counter GUARDED_BY(m_mutex) = 0;
+ bool m_strongly_seeded GUARDED_BY(m_mutex) = false;
+ std::unique_ptr<Mutex[]> m_mutex_openssl;
+
+public:
+ RNGState() noexcept
+ {
+ InitHardwareRand();
+
+ // Init OpenSSL library multithreading support
+ m_mutex_openssl.reset(new Mutex[CRYPTO_num_locks()]);
+ CRYPTO_set_locking_callback(LockingCallbackOpenSSL);
+
+ // OpenSSL can optionally load a config file which lists optional loadable modules and engines.
+ // We don't use them so we don't require the config. However some of our libs may call functions
+ // which attempt to load the config file, possibly resulting in an exit() or crash if it is missing
+ // or corrupt. Explicitly tell OpenSSL not to try to load the file. The result for our libs will be
+ // that the config appears to have been loaded and there are no modules/engines available.
+ OPENSSL_no_config();
+ }
+
+ ~RNGState()
+ {
+ // Securely erase the memory used by the OpenSSL PRNG
+ RAND_cleanup();
+ // Shutdown OpenSSL library multithreading support
+ CRYPTO_set_locking_callback(nullptr);
+ }
+
+ /** Extract up to 32 bytes of entropy from the RNG state, mixing in new entropy from hasher.
+ *
+ * If this function has never been called with strong_seed = true, false is returned.
+ */
+ bool MixExtract(unsigned char* out, size_t num, CSHA512&& hasher, bool strong_seed) noexcept
+ {
+ assert(num <= 32);
+ unsigned char buf[64];
+ static_assert(sizeof(buf) == CSHA512::OUTPUT_SIZE, "Buffer needs to have hasher's output size");
+ bool ret;
+ {
+ LOCK(m_mutex);
+ ret = (m_strongly_seeded |= strong_seed);
+ // Write the current state of the RNG into the hasher
+ hasher.Write(m_state, 32);
+ // Write a new counter number into the state
+ hasher.Write((const unsigned char*)&m_counter, sizeof(m_counter));
+ ++m_counter;
+ // Finalize the hasher
+ hasher.Finalize(buf);
+ // Store the last 32 bytes of the hash output as new RNG state.
+ memcpy(m_state, buf + 32, 32);
+ }
+ // If desired, copy (up to) the first 32 bytes of the hash output as output.
+ if (num) {
+ assert(out != nullptr);
+ memcpy(out, buf, num);
+ }
+ // Best effort cleanup of internal state
+ hasher.Reset();
+ memory_cleanse(buf, 64);
+ return ret;
+ }
+
+ Mutex& GetOpenSSLMutex(int i) { return m_mutex_openssl[i]; }
+};
+
+RNGState& GetRNGState() noexcept
+{
+ // This C++11 idiom relies on the guarantee that static variable are initialized
+ // on first call, even when multiple parallel calls are permitted.
+ static std::vector<RNGState, secure_allocator<RNGState>> g_rng(1);
+ return g_rng[0];
+}
+}
+
+void LockingCallbackOpenSSL(int mode, int i, const char* file, int line) NO_THREAD_SAFETY_ANALYSIS
{
- if (RAND_bytes(buf, num) != 1) {
- RandFailure();
+ RNGState& rng = GetRNGState();
+
+ if (mode & CRYPTO_LOCK) {
+ rng.GetOpenSSLMutex(i).lock();
+ } else {
+ rng.GetOpenSSLMutex(i).unlock();
}
}
-static void AddDataToRng(void* data, size_t len);
+/* A note on the use of noexcept in the seeding functions below:
+ *
+ * None of the RNG code should ever throw any exception, with the sole exception
+ * of MilliSleep in SeedSleep, which can (and does) support interruptions which
+ * cause a boost::thread_interrupted to be thrown.
+ *
+ * This means that SeedSleep, and all functions that invoke it are throwing.
+ * However, we know that GetRandBytes() and GetStrongRandBytes() never trigger
+ * this sleeping logic, so they are noexcept. The same is true for all the
+ * GetRand*() functions that use GetRandBytes() indirectly.
+ *
+ * TODO: After moving away from interruptible boost-based thread management,
+ * everything can become noexcept here.
+ */
-void RandAddSeedSleep()
+static void SeedTimestamp(CSHA512& hasher) noexcept
{
- int64_t nPerfCounter1 = GetPerformanceCounter();
- std::this_thread::sleep_for(std::chrono::milliseconds(1));
- int64_t nPerfCounter2 = GetPerformanceCounter();
+ int64_t perfcounter = GetPerformanceCounter();
+ hasher.Write((const unsigned char*)&perfcounter, sizeof(perfcounter));
+}
- // Combine with and update state
- AddDataToRng(&nPerfCounter1, sizeof(nPerfCounter1));
- AddDataToRng(&nPerfCounter2, sizeof(nPerfCounter2));
+static void SeedFast(CSHA512& hasher) noexcept
+{
+ unsigned char buffer[32];
+
+ // Stack pointer to indirectly commit to thread/callstack
+ const unsigned char* ptr = buffer;
+ hasher.Write((const unsigned char*)&ptr, sizeof(ptr));
- memory_cleanse(&nPerfCounter1, sizeof(nPerfCounter1));
- memory_cleanse(&nPerfCounter2, sizeof(nPerfCounter2));
+ // Hardware randomness is very fast when available; use it always.
+ SeedHardwareFast(hasher);
+
+ // High-precision timestamp
+ SeedTimestamp(hasher);
}
+static void SeedSlow(CSHA512& hasher) noexcept
+{
+ unsigned char buffer[32];
-static Mutex cs_rng_state;
-static unsigned char rng_state[32] = {0};
-static uint64_t rng_counter = 0;
+ // Everything that the 'fast' seeder includes
+ SeedFast(hasher);
-static void AddDataToRng(void* data, size_t len) {
- CSHA512 hasher;
- hasher.Write((const unsigned char*)&len, sizeof(len));
- hasher.Write((const unsigned char*)data, len);
- unsigned char buf[64];
- {
- WAIT_LOCK(cs_rng_state, lock);
- hasher.Write(rng_state, sizeof(rng_state));
- hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter));
- ++rng_counter;
- hasher.Finalize(buf);
- memcpy(rng_state, buf + 32, 32);
- }
- memory_cleanse(buf, 64);
+ // OS randomness
+ GetOSRand(buffer);
+ hasher.Write(buffer, sizeof(buffer));
+
+ // OpenSSL RNG (for now)
+ RAND_bytes(buffer, sizeof(buffer));
+ hasher.Write(buffer, sizeof(buffer));
+
+ // High-precision timestamp.
+ //
+ // Note that we also commit to a timestamp in the Fast seeder, so we indirectly commit to a
+ // benchmark of all the entropy gathering sources in this function).
+ SeedTimestamp(hasher);
}
-void GetStrongRandBytes(unsigned char* out, int num)
+static void SeedSleep(CSHA512& hasher)
{
- assert(num <= 32);
- CSHA512 hasher;
- unsigned char buf[64];
+ // Everything that the 'fast' seeder includes
+ SeedFast(hasher);
+
+ // High-precision timestamp
+ SeedTimestamp(hasher);
+
+ // Sleep for 1ms
+ MilliSleep(1);
+
+ // High-precision timestamp after sleeping (as we commit to both the time before and after, this measures the delay)
+ SeedTimestamp(hasher);
+
+ // Windows performance monitor data (once every 10 minutes)
+ RandAddSeedPerfmon(hasher);
+}
+
+static void SeedStartup(CSHA512& hasher) noexcept
+{
+#ifdef WIN32
+ RAND_screen();
+#endif
+
+ // Gather 256 bits of hardware randomness, if available
+ SeedHardwareSlow(hasher);
- // First source: OpenSSL's RNG
- RandAddSeedPerfmon();
- GetRandBytes(buf, 32);
- hasher.Write(buf, 32);
+ // Everything that the 'slow' seeder includes.
+ SeedSlow(hasher);
- // Second source: OS RNG
- GetOSRand(buf);
- hasher.Write(buf, 32);
+ // Windows performance monitor data.
+ RandAddSeedPerfmon(hasher);
+}
+
+enum class RNGLevel {
+ FAST, //!< Automatically called by GetRandBytes
+ SLOW, //!< Automatically called by GetStrongRandBytes
+ SLEEP, //!< Called by RandAddSeedSleep()
+};
+
+static void ProcRand(unsigned char* out, int num, RNGLevel level)
+{
+ // Make sure the RNG is initialized first (as all Seed* function possibly need hwrand to be available).
+ RNGState& rng = GetRNGState();
- // Third source: HW RNG, if available.
- if (GetHWRand(buf)) {
- hasher.Write(buf, 32);
+ assert(num <= 32);
+
+ CSHA512 hasher;
+ switch (level) {
+ case RNGLevel::FAST:
+ SeedFast(hasher);
+ break;
+ case RNGLevel::SLOW:
+ SeedSlow(hasher);
+ break;
+ case RNGLevel::SLEEP:
+ SeedSleep(hasher);
+ break;
}
// Combine with and update state
- {
- WAIT_LOCK(cs_rng_state, lock);
- hasher.Write(rng_state, sizeof(rng_state));
- hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter));
- ++rng_counter;
- hasher.Finalize(buf);
- memcpy(rng_state, buf + 32, 32);
+ if (!rng.MixExtract(out, num, std::move(hasher), false)) {
+ // On the first invocation, also seed with SeedStartup().
+ CSHA512 startup_hasher;
+ SeedStartup(startup_hasher);
+ rng.MixExtract(out, num, std::move(startup_hasher), true);
}
- // Produce output
- memcpy(out, buf, num);
- memory_cleanse(buf, 64);
+ // For anything but the 'fast' level, feed the resulting RNG output (after an additional hashing step) back into OpenSSL.
+ if (level != RNGLevel::FAST) {
+ unsigned char buf[64];
+ CSHA512().Write(out, num).Finalize(buf);
+ RAND_add(buf, sizeof(buf), num);
+ memory_cleanse(buf, 64);
+ }
}
-uint64_t GetRand(uint64_t nMax)
-{
- if (nMax == 0)
- return 0;
+void GetRandBytes(unsigned char* buf, int num) noexcept { ProcRand(buf, num, RNGLevel::FAST); }
+void GetStrongRandBytes(unsigned char* buf, int num) noexcept { ProcRand(buf, num, RNGLevel::SLOW); }
+void RandAddSeedSleep() { ProcRand(nullptr, 0, RNGLevel::SLEEP); }
- // The range of the random source must be a multiple of the modulus
- // to give every possible output value an equal possibility
- uint64_t nRange = (std::numeric_limits<uint64_t>::max() / nMax) * nMax;
- uint64_t nRand = 0;
- do {
- GetRandBytes((unsigned char*)&nRand, sizeof(nRand));
- } while (nRand >= nRange);
- return (nRand % nMax);
+bool g_mock_deterministic_tests{false};
+
+uint64_t GetRand(uint64_t nMax) noexcept
+{
+ return FastRandomContext(g_mock_deterministic_tests).randrange(nMax);
}
-int GetRandInt(int nMax)
+int GetRandInt(int nMax) noexcept
{
return GetRand(nMax);
}
-uint256 GetRandHash()
+uint256 GetRandHash() noexcept
{
uint256 hash;
GetRandBytes((unsigned char*)&hash, sizeof(hash));
@@ -385,7 +636,7 @@ void FastRandomContext::RandomSeed()
requires_seed = false;
}
-uint256 FastRandomContext::rand256()
+uint256 FastRandomContext::rand256() noexcept
{
if (bytebuf_size < 32) {
FillByteBuffer();
@@ -406,7 +657,7 @@ std::vector<unsigned char> FastRandomContext::randbytes(size_t len)
return ret;
}
-FastRandomContext::FastRandomContext(const uint256& seed) : requires_seed(false), bytebuf_size(0), bitbuf_size(0)
+FastRandomContext::FastRandomContext(const uint256& seed) noexcept : requires_seed(false), bytebuf_size(0), bitbuf_size(0)
{
rng.SetKey(seed.begin(), 32);
}
@@ -449,13 +700,15 @@ bool Random_SanityCheck()
if (stop == start) return false;
// We called GetPerformanceCounter. Use it as entropy.
- RAND_add((const unsigned char*)&start, sizeof(start), 1);
- RAND_add((const unsigned char*)&stop, sizeof(stop), 1);
+ CSHA512 to_add;
+ to_add.Write((const unsigned char*)&start, sizeof(start));
+ to_add.Write((const unsigned char*)&stop, sizeof(stop));
+ GetRNGState().MixExtract(nullptr, 0, std::move(to_add), false);
return true;
}
-FastRandomContext::FastRandomContext(bool fDeterministic) : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0)
+FastRandomContext::FastRandomContext(bool fDeterministic) noexcept : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0)
{
if (!fDeterministic) {
return;
@@ -480,5 +733,8 @@ FastRandomContext& FastRandomContext::operator=(FastRandomContext&& from) noexce
void RandomInit()
{
- RDRandInit();
+ // Invoke RNG code to trigger initialization (if not already performed)
+ ProcRand(nullptr, 0, RNGLevel::FAST);
+
+ ReportHardwareRand();
}