aboutsummaryrefslogtreecommitdiff
path: root/src/net.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/net.cpp')
-rw-r--r--src/net.cpp3176
1 files changed, 3176 insertions, 0 deletions
diff --git a/src/net.cpp b/src/net.cpp
new file mode 100644
index 0000000000..41ac31445d
--- /dev/null
+++ b/src/net.cpp
@@ -0,0 +1,3176 @@
+// Copyright (c) 2009-2010 Satoshi Nakamoto
+// Copyright (c) 2009-2021 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#if defined(HAVE_CONFIG_H)
+#include <config/bitcoin-config.h>
+#endif
+
+#include <net.h>
+
+#include <addrdb.h>
+#include <addrman.h>
+#include <banman.h>
+#include <clientversion.h>
+#include <compat.h>
+#include <consensus/consensus.h>
+#include <crypto/sha256.h>
+#include <fs.h>
+#include <i2p.h>
+#include <net_permissions.h>
+#include <netaddress.h>
+#include <netbase.h>
+#include <node/ui_interface.h>
+#include <protocol.h>
+#include <random.h>
+#include <scheduler.h>
+#include <util/sock.h>
+#include <util/strencodings.h>
+#include <util/syscall_sandbox.h>
+#include <util/system.h>
+#include <util/thread.h>
+#include <util/trace.h>
+#include <util/translation.h>
+
+#ifdef WIN32
+#include <string.h>
+#else
+#include <fcntl.h>
+#endif
+
+#if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
+#include <ifaddrs.h>
+#endif
+
+#ifdef USE_POLL
+#include <poll.h>
+#endif
+
+#include <algorithm>
+#include <array>
+#include <cstdint>
+#include <functional>
+#include <optional>
+#include <unordered_map>
+
+#include <math.h>
+
+/** Maximum number of block-relay-only anchor connections */
+static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
+static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
+/** Anchor IP address database file name */
+const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
+
+// How often to dump addresses to peers.dat
+static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
+
+/** Number of DNS seeds to query when the number of connections is low. */
+static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
+
+/** How long to delay before querying DNS seeds
+ *
+ * If we have more than THRESHOLD entries in addrman, then it's likely
+ * that we got those addresses from having previously connected to the P2P
+ * network, and that we'll be able to successfully reconnect to the P2P
+ * network via contacting one of them. So if that's the case, spend a
+ * little longer trying to connect to known peers before querying the
+ * DNS seeds.
+ */
+static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
+static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
+static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
+
+/** The default timeframe for -maxuploadtarget. 1 day. */
+static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
+
+// We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization.
+#define FEELER_SLEEP_WINDOW 1
+
+/** Used to pass flags to the Bind() function */
+enum BindFlags {
+ BF_NONE = 0,
+ BF_EXPLICIT = (1U << 0),
+ BF_REPORT_ERROR = (1U << 1),
+ /**
+ * Do not call AddLocal() for our special addresses, e.g., for incoming
+ * Tor connections, to prevent gossiping them over the network.
+ */
+ BF_DONT_ADVERTISE = (1U << 2),
+};
+
+// The set of sockets cannot be modified while waiting
+// The sleep time needs to be small to avoid new sockets stalling
+static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
+
+const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
+
+static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
+static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
+static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
+//
+// Global state variables
+//
+bool fDiscover = true;
+bool fListen = true;
+Mutex g_maplocalhost_mutex;
+std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
+static bool vfLimited[NET_MAX] GUARDED_BY(g_maplocalhost_mutex) = {};
+std::string strSubVersion;
+
+void CConnman::AddAddrFetch(const std::string& strDest)
+{
+ LOCK(m_addr_fetches_mutex);
+ m_addr_fetches.push_back(strDest);
+}
+
+uint16_t GetListenPort()
+{
+ // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
+ for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
+ CService bind_addr;
+ constexpr uint16_t dummy_port = 0;
+
+ if (Lookup(bind_arg, bind_addr, dummy_port, /*fAllowLookup=*/false)) {
+ if (bind_addr.GetPort() != dummy_port) {
+ return bind_addr.GetPort();
+ }
+ }
+ }
+
+ // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
+ // (-whitebind= is required to have ":port").
+ for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
+ NetWhitebindPermissions whitebind;
+ bilingual_str error;
+ if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
+ if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
+ return whitebind.m_service.GetPort();
+ }
+ }
+ }
+
+ // Otherwise, if -port= is provided, use that. Otherwise use the default port.
+ return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
+}
+
+// find 'best' local address for a particular peer
+bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
+{
+ if (!fListen)
+ return false;
+
+ int nBestScore = -1;
+ int nBestReachability = -1;
+ {
+ LOCK(g_maplocalhost_mutex);
+ for (const auto& entry : mapLocalHost)
+ {
+ int nScore = entry.second.nScore;
+ int nReachability = entry.first.GetReachabilityFrom(paddrPeer);
+ if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
+ {
+ addr = CService(entry.first, entry.second.nPort);
+ nBestReachability = nReachability;
+ nBestScore = nScore;
+ }
+ }
+ }
+ return nBestScore >= 0;
+}
+
+//! Convert the serialized seeds into usable address objects.
+static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
+{
+ // It'll only connect to one or two seed nodes because once it connects,
+ // it'll get a pile of addresses with newer timestamps.
+ // Seed nodes are given a random 'last seen time' of between one and two
+ // weeks ago.
+ const int64_t nOneWeek = 7*24*60*60;
+ std::vector<CAddress> vSeedsOut;
+ FastRandomContext rng;
+ CDataStream s(vSeedsIn, SER_NETWORK, PROTOCOL_VERSION | ADDRV2_FORMAT);
+ while (!s.eof()) {
+ CService endpoint;
+ s >> endpoint;
+ CAddress addr{endpoint, GetDesirableServiceFlags(NODE_NONE)};
+ addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek;
+ LogPrint(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToString());
+ vSeedsOut.push_back(addr);
+ }
+ return vSeedsOut;
+}
+
+// get best local address for a particular peer as a CAddress
+// Otherwise, return the unroutable 0.0.0.0 but filled in with
+// the normal parameters, since the IP may be changed to a useful
+// one by discovery.
+CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices)
+{
+ CAddress ret(CService(CNetAddr(),GetListenPort()), nLocalServices);
+ CService addr;
+ if (GetLocal(addr, paddrPeer))
+ {
+ ret = CAddress(addr, nLocalServices);
+ }
+ ret.nTime = GetAdjustedTime();
+ return ret;
+}
+
+static int GetnScore(const CService& addr)
+{
+ LOCK(g_maplocalhost_mutex);
+ const auto it = mapLocalHost.find(addr);
+ return (it != mapLocalHost.end()) ? it->second.nScore : 0;
+}
+
+// Is our peer's addrLocal potentially useful as an external IP source?
+bool IsPeerAddrLocalGood(CNode *pnode)
+{
+ CService addrLocal = pnode->GetAddrLocal();
+ return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
+ IsReachable(addrLocal.GetNetwork());
+}
+
+std::optional<CAddress> GetLocalAddrForPeer(CNode *pnode)
+{
+ CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
+ if (gArgs.GetBoolArg("-addrmantest", false)) {
+ // use IPv4 loopback during addrmantest
+ addrLocal = CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())), pnode->GetLocalServices());
+ }
+ // If discovery is enabled, sometimes give our peer the address it
+ // tells us that it sees us as in case it has a better idea of our
+ // address than we do.
+ FastRandomContext rng;
+ if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
+ rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
+ {
+ if (pnode->IsInboundConn()) {
+ // For inbound connections, assume both the address and the port
+ // as seen from the peer.
+ addrLocal = CAddress{pnode->GetAddrLocal(), addrLocal.nServices};
+ } else {
+ // For outbound connections, assume just the address as seen from
+ // the peer and leave the port in `addrLocal` as returned by
+ // `GetLocalAddress()` above. The peer has no way to observe our
+ // listening port when we have initiated the connection.
+ addrLocal.SetIP(pnode->GetAddrLocal());
+ }
+ }
+ if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false))
+ {
+ LogPrint(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToString(), pnode->GetId());
+ return addrLocal;
+ }
+ // Address is unroutable. Don't advertise.
+ return std::nullopt;
+}
+
+/**
+ * If an IPv6 address belongs to the address range used by the CJDNS network and
+ * the CJDNS network is reachable (-cjdnsreachable config is set), then change
+ * the type from NET_IPV6 to NET_CJDNS.
+ * @param[in] service Address to potentially convert.
+ * @return a copy of `service` either unmodified or changed to CJDNS.
+ */
+CService MaybeFlipIPv6toCJDNS(const CService& service)
+{
+ CService ret{service};
+ if (ret.m_net == NET_IPV6 && ret.m_addr[0] == 0xfc && IsReachable(NET_CJDNS)) {
+ ret.m_net = NET_CJDNS;
+ }
+ return ret;
+}
+
+// learn a new local address
+bool AddLocal(const CService& addr_, int nScore)
+{
+ CService addr{MaybeFlipIPv6toCJDNS(addr_)};
+
+ if (!addr.IsRoutable())
+ return false;
+
+ if (!fDiscover && nScore < LOCAL_MANUAL)
+ return false;
+
+ if (!IsReachable(addr))
+ return false;
+
+ LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
+
+ {
+ LOCK(g_maplocalhost_mutex);
+ const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
+ LocalServiceInfo &info = it->second;
+ if (is_newly_added || nScore >= info.nScore) {
+ info.nScore = nScore + (is_newly_added ? 0 : 1);
+ info.nPort = addr.GetPort();
+ }
+ }
+
+ return true;
+}
+
+bool AddLocal(const CNetAddr &addr, int nScore)
+{
+ return AddLocal(CService(addr, GetListenPort()), nScore);
+}
+
+void RemoveLocal(const CService& addr)
+{
+ LOCK(g_maplocalhost_mutex);
+ LogPrintf("RemoveLocal(%s)\n", addr.ToString());
+ mapLocalHost.erase(addr);
+}
+
+void SetReachable(enum Network net, bool reachable)
+{
+ if (net == NET_UNROUTABLE || net == NET_INTERNAL)
+ return;
+ LOCK(g_maplocalhost_mutex);
+ vfLimited[net] = !reachable;
+}
+
+bool IsReachable(enum Network net)
+{
+ LOCK(g_maplocalhost_mutex);
+ return !vfLimited[net];
+}
+
+bool IsReachable(const CNetAddr &addr)
+{
+ return IsReachable(addr.GetNetwork());
+}
+
+/** vote for a local address */
+bool SeenLocal(const CService& addr)
+{
+ LOCK(g_maplocalhost_mutex);
+ const auto it = mapLocalHost.find(addr);
+ if (it == mapLocalHost.end()) return false;
+ ++it->second.nScore;
+ return true;
+}
+
+
+/** check whether a given address is potentially local */
+bool IsLocal(const CService& addr)
+{
+ LOCK(g_maplocalhost_mutex);
+ return mapLocalHost.count(addr) > 0;
+}
+
+CNode* CConnman::FindNode(const CNetAddr& ip)
+{
+ LOCK(m_nodes_mutex);
+ for (CNode* pnode : m_nodes) {
+ if (static_cast<CNetAddr>(pnode->addr) == ip) {
+ return pnode;
+ }
+ }
+ return nullptr;
+}
+
+CNode* CConnman::FindNode(const CSubNet& subNet)
+{
+ LOCK(m_nodes_mutex);
+ for (CNode* pnode : m_nodes) {
+ if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
+ return pnode;
+ }
+ }
+ return nullptr;
+}
+
+CNode* CConnman::FindNode(const std::string& addrName)
+{
+ LOCK(m_nodes_mutex);
+ for (CNode* pnode : m_nodes) {
+ if (pnode->m_addr_name == addrName) {
+ return pnode;
+ }
+ }
+ return nullptr;
+}
+
+CNode* CConnman::FindNode(const CService& addr)
+{
+ LOCK(m_nodes_mutex);
+ for (CNode* pnode : m_nodes) {
+ if (static_cast<CService>(pnode->addr) == addr) {
+ return pnode;
+ }
+ }
+ return nullptr;
+}
+
+bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
+{
+ return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringIPPort());
+}
+
+bool CConnman::CheckIncomingNonce(uint64_t nonce)
+{
+ LOCK(m_nodes_mutex);
+ for (const CNode* pnode : m_nodes) {
+ if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
+ return false;
+ }
+ return true;
+}
+
+/** Get the bind address for a socket as CAddress */
+static CAddress GetBindAddress(SOCKET sock)
+{
+ CAddress addr_bind;
+ struct sockaddr_storage sockaddr_bind;
+ socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
+ if (sock != INVALID_SOCKET) {
+ if (!getsockname(sock, (struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
+ addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
+ } else {
+ LogPrint(BCLog::NET, "Warning: getsockname failed\n");
+ }
+ }
+ return addr_bind;
+}
+
+CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type)
+{
+ assert(conn_type != ConnectionType::INBOUND);
+
+ if (pszDest == nullptr) {
+ if (IsLocal(addrConnect))
+ return nullptr;
+
+ // Look for an existing connection
+ CNode* pnode = FindNode(static_cast<CService>(addrConnect));
+ if (pnode)
+ {
+ LogPrintf("Failed to open new connection, already connected\n");
+ return nullptr;
+ }
+ }
+
+ /// debug print
+ LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
+ pszDest ? pszDest : addrConnect.ToString(),
+ pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
+
+ // Resolve
+ const uint16_t default_port{pszDest != nullptr ? Params().GetDefaultPort(pszDest) :
+ Params().GetDefaultPort()};
+ if (pszDest) {
+ std::vector<CService> resolved;
+ if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) {
+ const CService rnd{resolved[GetRand(resolved.size())]};
+ addrConnect = CAddress{MaybeFlipIPv6toCJDNS(rnd), NODE_NONE};
+ if (!addrConnect.IsValid()) {
+ LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest);
+ return nullptr;
+ }
+ // It is possible that we already have a connection to the IP/port pszDest resolved to.
+ // In that case, drop the connection that was just created.
+ LOCK(m_nodes_mutex);
+ CNode* pnode = FindNode(static_cast<CService>(addrConnect));
+ if (pnode) {
+ LogPrintf("Failed to open new connection, already connected\n");
+ return nullptr;
+ }
+ }
+ }
+
+ // Connect
+ bool connected = false;
+ std::unique_ptr<Sock> sock;
+ Proxy proxy;
+ CAddress addr_bind;
+ assert(!addr_bind.IsValid());
+
+ if (addrConnect.IsValid()) {
+ bool proxyConnectionFailed = false;
+
+ if (addrConnect.GetNetwork() == NET_I2P && m_i2p_sam_session.get() != nullptr) {
+ i2p::Connection conn;
+ if (m_i2p_sam_session->Connect(addrConnect, conn, proxyConnectionFailed)) {
+ connected = true;
+ sock = std::move(conn.sock);
+ addr_bind = CAddress{conn.me, NODE_NONE};
+ }
+ } else if (GetProxy(addrConnect.GetNetwork(), proxy)) {
+ sock = CreateSock(proxy.proxy);
+ if (!sock) {
+ return nullptr;
+ }
+ connected = ConnectThroughProxy(proxy, addrConnect.ToStringIP(), addrConnect.GetPort(),
+ *sock, nConnectTimeout, proxyConnectionFailed);
+ } else {
+ // no proxy needed (none set for target network)
+ sock = CreateSock(addrConnect);
+ if (!sock) {
+ return nullptr;
+ }
+ connected = ConnectSocketDirectly(addrConnect, *sock, nConnectTimeout,
+ conn_type == ConnectionType::MANUAL);
+ }
+ if (!proxyConnectionFailed) {
+ // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
+ // the proxy, mark this as an attempt.
+ addrman.Attempt(addrConnect, fCountFailure);
+ }
+ } else if (pszDest && GetNameProxy(proxy)) {
+ sock = CreateSock(proxy.proxy);
+ if (!sock) {
+ return nullptr;
+ }
+ std::string host;
+ uint16_t port{default_port};
+ SplitHostPort(std::string(pszDest), port, host);
+ bool proxyConnectionFailed;
+ connected = ConnectThroughProxy(proxy, host, port, *sock, nConnectTimeout,
+ proxyConnectionFailed);
+ }
+ if (!connected) {
+ return nullptr;
+ }
+
+ // Add node
+ NodeId id = GetNewNodeId();
+ uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
+ if (!addr_bind.IsValid()) {
+ addr_bind = GetBindAddress(sock->Get());
+ }
+ CNode* pnode = new CNode(id,
+ nLocalServices,
+ std::move(sock),
+ addrConnect,
+ CalculateKeyedNetGroup(addrConnect),
+ nonce,
+ addr_bind,
+ pszDest ? pszDest : "",
+ conn_type,
+ /*inbound_onion=*/false);
+ pnode->AddRef();
+
+ // We're making a new connection, harvest entropy from the time (and our peer count)
+ RandAddEvent((uint32_t)id);
+
+ return pnode;
+}
+
+void CNode::CloseSocketDisconnect()
+{
+ fDisconnect = true;
+ LOCK(m_sock_mutex);
+ if (m_sock) {
+ LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
+ m_sock.reset();
+ }
+}
+
+void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const {
+ for (const auto& subnet : vWhitelistedRange) {
+ if (subnet.m_subnet.Match(addr)) NetPermissions::AddFlag(flags, subnet.m_flags);
+ }
+}
+
+std::string ConnectionTypeAsString(ConnectionType conn_type)
+{
+ switch (conn_type) {
+ case ConnectionType::INBOUND:
+ return "inbound";
+ case ConnectionType::MANUAL:
+ return "manual";
+ case ConnectionType::FEELER:
+ return "feeler";
+ case ConnectionType::OUTBOUND_FULL_RELAY:
+ return "outbound-full-relay";
+ case ConnectionType::BLOCK_RELAY:
+ return "block-relay-only";
+ case ConnectionType::ADDR_FETCH:
+ return "addr-fetch";
+ } // no default case, so the compiler can warn about missing cases
+
+ assert(false);
+}
+
+CService CNode::GetAddrLocal() const
+{
+ AssertLockNotHeld(m_addr_local_mutex);
+ LOCK(m_addr_local_mutex);
+ return addrLocal;
+}
+
+void CNode::SetAddrLocal(const CService& addrLocalIn) {
+ AssertLockNotHeld(m_addr_local_mutex);
+ LOCK(m_addr_local_mutex);
+ if (addrLocal.IsValid()) {
+ error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToString(), addrLocalIn.ToString());
+ } else {
+ addrLocal = addrLocalIn;
+ }
+}
+
+Network CNode::ConnectedThroughNetwork() const
+{
+ return m_inbound_onion ? NET_ONION : addr.GetNetClass();
+}
+
+#undef X
+#define X(name) stats.name = name
+void CNode::CopyStats(CNodeStats& stats)
+{
+ stats.nodeid = this->GetId();
+ X(nServices);
+ X(addr);
+ X(addrBind);
+ stats.m_network = ConnectedThroughNetwork();
+ X(m_last_send);
+ X(m_last_recv);
+ X(m_last_tx_time);
+ X(m_last_block_time);
+ X(m_connected);
+ X(nTimeOffset);
+ X(m_addr_name);
+ X(nVersion);
+ {
+ LOCK(m_subver_mutex);
+ X(cleanSubVer);
+ }
+ stats.fInbound = IsInboundConn();
+ X(m_bip152_highbandwidth_to);
+ X(m_bip152_highbandwidth_from);
+ {
+ LOCK(cs_vSend);
+ X(mapSendBytesPerMsgType);
+ X(nSendBytes);
+ }
+ {
+ LOCK(cs_vRecv);
+ X(mapRecvBytesPerMsgType);
+ X(nRecvBytes);
+ }
+ X(m_permissionFlags);
+
+ X(m_last_ping_time);
+ X(m_min_ping_time);
+
+ // Leave string empty if addrLocal invalid (not filled in yet)
+ CService addrLocalUnlocked = GetAddrLocal();
+ stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
+
+ X(m_conn_type);
+}
+#undef X
+
+bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
+{
+ complete = false;
+ const auto time = GetTime<std::chrono::microseconds>();
+ LOCK(cs_vRecv);
+ m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
+ nRecvBytes += msg_bytes.size();
+ while (msg_bytes.size() > 0) {
+ // absorb network data
+ int handled = m_deserializer->Read(msg_bytes);
+ if (handled < 0) {
+ // Serious header problem, disconnect from the peer.
+ return false;
+ }
+
+ if (m_deserializer->Complete()) {
+ // decompose a transport agnostic CNetMessage from the deserializer
+ bool reject_message{false};
+ CNetMessage msg = m_deserializer->GetMessage(time, reject_message);
+ if (reject_message) {
+ // Message deserialization failed. Drop the message but don't disconnect the peer.
+ // store the size of the corrupt message
+ mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
+ continue;
+ }
+
+ // Store received bytes per message type.
+ // To prevent a memory DOS, only allow known message types.
+ auto i = mapRecvBytesPerMsgType.find(msg.m_type);
+ if (i == mapRecvBytesPerMsgType.end()) {
+ i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
+ }
+ assert(i != mapRecvBytesPerMsgType.end());
+ i->second += msg.m_raw_message_size;
+
+ // push the message to the process queue,
+ vRecvMsg.push_back(std::move(msg));
+
+ complete = true;
+ }
+ }
+
+ return true;
+}
+
+int V1TransportDeserializer::readHeader(Span<const uint8_t> msg_bytes)
+{
+ // copy data to temporary parsing buffer
+ unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
+ unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
+
+ memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
+ nHdrPos += nCopy;
+
+ // if header incomplete, exit
+ if (nHdrPos < CMessageHeader::HEADER_SIZE)
+ return nCopy;
+
+ // deserialize to CMessageHeader
+ try {
+ hdrbuf >> hdr;
+ }
+ catch (const std::exception&) {
+ LogPrint(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
+ return -1;
+ }
+
+ // Check start string, network magic
+ if (memcmp(hdr.pchMessageStart, m_chain_params.MessageStart(), CMessageHeader::MESSAGE_START_SIZE) != 0) {
+ LogPrint(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
+ return -1;
+ }
+
+ // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
+ if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
+ LogPrint(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetCommand()), hdr.nMessageSize, m_node_id);
+ return -1;
+ }
+
+ // switch state to reading message data
+ in_data = true;
+
+ return nCopy;
+}
+
+int V1TransportDeserializer::readData(Span<const uint8_t> msg_bytes)
+{
+ unsigned int nRemaining = hdr.nMessageSize - nDataPos;
+ unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
+
+ if (vRecv.size() < nDataPos + nCopy) {
+ // Allocate up to 256 KiB ahead, but never more than the total message size.
+ vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
+ }
+
+ hasher.Write(msg_bytes.first(nCopy));
+ memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
+ nDataPos += nCopy;
+
+ return nCopy;
+}
+
+const uint256& V1TransportDeserializer::GetMessageHash() const
+{
+ assert(Complete());
+ if (data_hash.IsNull())
+ hasher.Finalize(data_hash);
+ return data_hash;
+}
+
+CNetMessage V1TransportDeserializer::GetMessage(const std::chrono::microseconds time, bool& reject_message)
+{
+ // Initialize out parameter
+ reject_message = false;
+ // decompose a single CNetMessage from the TransportDeserializer
+ CNetMessage msg(std::move(vRecv));
+
+ // store message type string, time, and sizes
+ msg.m_type = hdr.GetCommand();
+ msg.m_time = time;
+ msg.m_message_size = hdr.nMessageSize;
+ msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
+
+ uint256 hash = GetMessageHash();
+
+ // We just received a message off the wire, harvest entropy from the time (and the message checksum)
+ RandAddEvent(ReadLE32(hash.begin()));
+
+ // Check checksum and header message type string
+ if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
+ LogPrint(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
+ SanitizeString(msg.m_type), msg.m_message_size,
+ HexStr(Span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
+ HexStr(hdr.pchChecksum),
+ m_node_id);
+ reject_message = true;
+ } else if (!hdr.IsCommandValid()) {
+ LogPrint(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
+ SanitizeString(hdr.GetCommand()), msg.m_message_size, m_node_id);
+ reject_message = true;
+ }
+
+ // Always reset the network deserializer (prepare for the next message)
+ Reset();
+ return msg;
+}
+
+void V1TransportSerializer::prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) {
+ // create dbl-sha256 checksum
+ uint256 hash = Hash(msg.data);
+
+ // create header
+ CMessageHeader hdr(Params().MessageStart(), msg.m_type.c_str(), msg.data.size());
+ memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
+
+ // serialize header
+ header.reserve(CMessageHeader::HEADER_SIZE);
+ CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, header, 0, hdr};
+}
+
+size_t CConnman::SocketSendData(CNode& node) const
+{
+ auto it = node.vSendMsg.begin();
+ size_t nSentSize = 0;
+
+ while (it != node.vSendMsg.end()) {
+ const auto& data = *it;
+ assert(data.size() > node.nSendOffset);
+ int nBytes = 0;
+ {
+ LOCK(node.m_sock_mutex);
+ if (!node.m_sock) {
+ break;
+ }
+ nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()) + node.nSendOffset, data.size() - node.nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
+ }
+ if (nBytes > 0) {
+ node.m_last_send = GetTime<std::chrono::seconds>();
+ node.nSendBytes += nBytes;
+ node.nSendOffset += nBytes;
+ nSentSize += nBytes;
+ if (node.nSendOffset == data.size()) {
+ node.nSendOffset = 0;
+ node.nSendSize -= data.size();
+ node.fPauseSend = node.nSendSize > nSendBufferMaxSize;
+ it++;
+ } else {
+ // could not send full message; stop sending more
+ break;
+ }
+ } else {
+ if (nBytes < 0) {
+ // error
+ int nErr = WSAGetLastError();
+ if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
+ LogPrint(BCLog::NET, "socket send error for peer=%d: %s\n", node.GetId(), NetworkErrorString(nErr));
+ node.CloseSocketDisconnect();
+ }
+ }
+ // couldn't send anything at all
+ break;
+ }
+ }
+
+ if (it == node.vSendMsg.end()) {
+ assert(node.nSendOffset == 0);
+ assert(node.nSendSize == 0);
+ }
+ node.vSendMsg.erase(node.vSendMsg.begin(), it);
+ return nSentSize;
+}
+
+static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
+{
+ return a.m_min_ping_time > b.m_min_ping_time;
+}
+
+static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
+{
+ return a.m_connected > b.m_connected;
+}
+
+static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
+ return a.nKeyedNetGroup < b.nKeyedNetGroup;
+}
+
+static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
+{
+ // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
+ if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
+ if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
+ return a.m_connected > b.m_connected;
+}
+
+static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
+{
+ // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
+ if (a.m_last_tx_time != b.m_last_tx_time) return a.m_last_tx_time < b.m_last_tx_time;
+ if (a.m_relay_txs != b.m_relay_txs) return b.m_relay_txs;
+ if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
+ return a.m_connected > b.m_connected;
+}
+
+// Pick out the potential block-relay only peers, and sort them by last block time.
+static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
+{
+ if (a.m_relay_txs != b.m_relay_txs) return a.m_relay_txs;
+ if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
+ if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
+ return a.m_connected > b.m_connected;
+}
+
+/**
+ * Sort eviction candidates by network/localhost and connection uptime.
+ * Candidates near the beginning are more likely to be evicted, and those
+ * near the end are more likely to be protected, e.g. less likely to be evicted.
+ * - First, nodes that are not `is_local` and that do not belong to `network`,
+ * sorted by increasing uptime (from most recently connected to connected longer).
+ * - Then, nodes that are `is_local` or belong to `network`, sorted by increasing uptime.
+ */
+struct CompareNodeNetworkTime {
+ const bool m_is_local;
+ const Network m_network;
+ CompareNodeNetworkTime(bool is_local, Network network) : m_is_local(is_local), m_network(network) {}
+ bool operator()(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) const
+ {
+ if (m_is_local && a.m_is_local != b.m_is_local) return b.m_is_local;
+ if ((a.m_network == m_network) != (b.m_network == m_network)) return b.m_network == m_network;
+ return a.m_connected > b.m_connected;
+ };
+};
+
+//! Sort an array by the specified comparator, then erase the last K elements where predicate is true.
+template <typename T, typename Comparator>
+static void EraseLastKElements(
+ std::vector<T>& elements, Comparator comparator, size_t k,
+ std::function<bool(const NodeEvictionCandidate&)> predicate = [](const NodeEvictionCandidate& n) { return true; })
+{
+ std::sort(elements.begin(), elements.end(), comparator);
+ size_t eraseSize = std::min(k, elements.size());
+ elements.erase(std::remove_if(elements.end() - eraseSize, elements.end(), predicate), elements.end());
+}
+
+void ProtectEvictionCandidatesByRatio(std::vector<NodeEvictionCandidate>& eviction_candidates)
+{
+ // Protect the half of the remaining nodes which have been connected the longest.
+ // This replicates the non-eviction implicit behavior, and precludes attacks that start later.
+ // To favorise the diversity of our peer connections, reserve up to half of these protected
+ // spots for Tor/onion, localhost, I2P, and CJDNS peers, even if they're not longest uptime
+ // overall. This helps protect these higher-latency peers that tend to be otherwise
+ // disadvantaged under our eviction criteria.
+ const size_t initial_size = eviction_candidates.size();
+ const size_t total_protect_size{initial_size / 2};
+
+ // Disadvantaged networks to protect. In the case of equal counts, earlier array members
+ // have the first opportunity to recover unused slots from the previous iteration.
+ struct Net { bool is_local; Network id; size_t count; };
+ std::array<Net, 4> networks{
+ {{false, NET_CJDNS, 0}, {false, NET_I2P, 0}, {/*localhost=*/true, NET_MAX, 0}, {false, NET_ONION, 0}}};
+
+ // Count and store the number of eviction candidates per network.
+ for (Net& n : networks) {
+ n.count = std::count_if(eviction_candidates.cbegin(), eviction_candidates.cend(),
+ [&n](const NodeEvictionCandidate& c) {
+ return n.is_local ? c.m_is_local : c.m_network == n.id;
+ });
+ }
+ // Sort `networks` by ascending candidate count, to give networks having fewer candidates
+ // the first opportunity to recover unused protected slots from the previous iteration.
+ std::stable_sort(networks.begin(), networks.end(), [](Net a, Net b) { return a.count < b.count; });
+
+ // Protect up to 25% of the eviction candidates by disadvantaged network.
+ const size_t max_protect_by_network{total_protect_size / 2};
+ size_t num_protected{0};
+
+ while (num_protected < max_protect_by_network) {
+ // Count the number of disadvantaged networks from which we have peers to protect.
+ auto num_networks = std::count_if(networks.begin(), networks.end(), [](const Net& n) { return n.count; });
+ if (num_networks == 0) {
+ break;
+ }
+ const size_t disadvantaged_to_protect{max_protect_by_network - num_protected};
+ const size_t protect_per_network{std::max(disadvantaged_to_protect / num_networks, static_cast<size_t>(1))};
+ // Early exit flag if there are no remaining candidates by disadvantaged network.
+ bool protected_at_least_one{false};
+
+ for (Net& n : networks) {
+ if (n.count == 0) continue;
+ const size_t before = eviction_candidates.size();
+ EraseLastKElements(eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id),
+ protect_per_network, [&n](const NodeEvictionCandidate& c) {
+ return n.is_local ? c.m_is_local : c.m_network == n.id;
+ });
+ const size_t after = eviction_candidates.size();
+ if (before > after) {
+ protected_at_least_one = true;
+ const size_t delta{before - after};
+ num_protected += delta;
+ if (num_protected >= max_protect_by_network) {
+ break;
+ }
+ n.count -= delta;
+ }
+ }
+ if (!protected_at_least_one) {
+ break;
+ }
+ }
+
+ // Calculate how many we removed, and update our total number of peers that
+ // we want to protect based on uptime accordingly.
+ assert(num_protected == initial_size - eviction_candidates.size());
+ const size_t remaining_to_protect{total_protect_size - num_protected};
+ EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected, remaining_to_protect);
+}
+
+[[nodiscard]] std::optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates)
+{
+ // Protect connections with certain characteristics
+
+ // Deterministically select 4 peers to protect by netgroup.
+ // An attacker cannot predict which netgroups will be protected
+ EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
+ // Protect the 8 nodes with the lowest minimum ping time.
+ // An attacker cannot manipulate this metric without physically moving nodes closer to the target.
+ EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
+ // Protect 4 nodes that most recently sent us novel transactions accepted into our mempool.
+ // An attacker cannot manipulate this metric without performing useful work.
+ EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
+ // Protect up to 8 non-tx-relay peers that have sent us novel blocks.
+ EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8,
+ [](const NodeEvictionCandidate& n) { return !n.m_relay_txs && n.fRelevantServices; });
+
+ // Protect 4 nodes that most recently sent us novel blocks.
+ // An attacker cannot manipulate this metric without performing useful work.
+ EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
+
+ // Protect some of the remaining eviction candidates by ratios of desirable
+ // or disadvantaged characteristics.
+ ProtectEvictionCandidatesByRatio(vEvictionCandidates);
+
+ if (vEvictionCandidates.empty()) return std::nullopt;
+
+ // If any remaining peers are preferred for eviction consider only them.
+ // This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks)
+ // then we probably don't want to evict it no matter what.
+ if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) {
+ vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(),
+ [](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end());
+ }
+
+ // Identify the network group with the most connections and youngest member.
+ // (vEvictionCandidates is already sorted by reverse connect time)
+ uint64_t naMostConnections;
+ unsigned int nMostConnections = 0;
+ std::chrono::seconds nMostConnectionsTime{0};
+ std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
+ for (const NodeEvictionCandidate &node : vEvictionCandidates) {
+ std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup];
+ group.push_back(node);
+ const auto grouptime{group[0].m_connected};
+
+ if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) {
+ nMostConnections = group.size();
+ nMostConnectionsTime = grouptime;
+ naMostConnections = node.nKeyedNetGroup;
+ }
+ }
+
+ // Reduce to the network group with the most connections
+ vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
+
+ // Disconnect from the network group with the most connections
+ return vEvictionCandidates.front().id;
+}
+
+/** Try to find a connection to evict when the node is full.
+ * Extreme care must be taken to avoid opening the node to attacker
+ * triggered network partitioning.
+ * The strategy used here is to protect a small number of peers
+ * for each of several distinct characteristics which are difficult
+ * to forge. In order to partition a node the attacker must be
+ * simultaneously better at all of them than honest peers.
+ */
+bool CConnman::AttemptToEvictConnection()
+{
+ std::vector<NodeEvictionCandidate> vEvictionCandidates;
+ {
+
+ LOCK(m_nodes_mutex);
+ for (const CNode* node : m_nodes) {
+ if (node->HasPermission(NetPermissionFlags::NoBan))
+ continue;
+ if (!node->IsInboundConn())
+ continue;
+ if (node->fDisconnect)
+ continue;
+ NodeEvictionCandidate candidate = {node->GetId(), node->m_connected, node->m_min_ping_time,
+ node->m_last_block_time, node->m_last_tx_time,
+ HasAllDesirableServiceFlags(node->nServices),
+ node->m_relays_txs.load(), node->m_bloom_filter_loaded.load(),
+ node->nKeyedNetGroup, node->m_prefer_evict, node->addr.IsLocal(),
+ node->ConnectedThroughNetwork()};
+ vEvictionCandidates.push_back(candidate);
+ }
+ }
+ const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
+ if (!node_id_to_evict) {
+ return false;
+ }
+ LOCK(m_nodes_mutex);
+ for (CNode* pnode : m_nodes) {
+ if (pnode->GetId() == *node_id_to_evict) {
+ LogPrint(BCLog::NET, "selected %s connection for eviction peer=%d; disconnecting\n", pnode->ConnectionTypeAsString(), pnode->GetId());
+ pnode->fDisconnect = true;
+ return true;
+ }
+ }
+ return false;
+}
+
+void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
+ struct sockaddr_storage sockaddr;
+ socklen_t len = sizeof(sockaddr);
+ auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
+ CAddress addr;
+
+ if (!sock) {
+ const int nErr = WSAGetLastError();
+ if (nErr != WSAEWOULDBLOCK) {
+ LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
+ }
+ return;
+ }
+
+ if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
+ LogPrintf("Warning: Unknown socket family\n");
+ } else {
+ addr = CAddress{MaybeFlipIPv6toCJDNS(addr), NODE_NONE};
+ }
+
+ const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(sock->Get())), NODE_NONE};
+
+ NetPermissionFlags permissionFlags = NetPermissionFlags::None;
+ hListenSocket.AddSocketPermissionFlags(permissionFlags);
+
+ CreateNodeFromAcceptedSocket(std::move(sock), permissionFlags, addr_bind, addr);
+}
+
+void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
+ NetPermissionFlags permissionFlags,
+ const CAddress& addr_bind,
+ const CAddress& addr)
+{
+ int nInbound = 0;
+ int nMaxInbound = nMaxConnections - m_max_outbound;
+
+ AddWhitelistPermissionFlags(permissionFlags, addr);
+ if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::Implicit)) {
+ NetPermissions::ClearFlag(permissionFlags, NetPermissionFlags::Implicit);
+ if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::ForceRelay);
+ if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::Relay);
+ NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::Mempool);
+ NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::NoBan);
+ }
+
+ {
+ LOCK(m_nodes_mutex);
+ for (const CNode* pnode : m_nodes) {
+ if (pnode->IsInboundConn()) nInbound++;
+ }
+ }
+
+ if (!fNetworkActive) {
+ LogPrint(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToString());
+ return;
+ }
+
+ if (!IsSelectableSocket(sock->Get()))
+ {
+ LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString());
+ return;
+ }
+
+ // According to the internet TCP_NODELAY is not carried into accepted sockets
+ // on all platforms. Set it again here just to be sure.
+ const int on{1};
+ if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
+ LogPrint(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
+ addr.ToString());
+ }
+
+ // Don't accept connections from banned peers.
+ bool banned = m_banman && m_banman->IsBanned(addr);
+ if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::NoBan) && banned)
+ {
+ LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToString());
+ return;
+ }
+
+ // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
+ bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
+ if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::NoBan) && nInbound + 1 >= nMaxInbound && discouraged)
+ {
+ LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToString());
+ return;
+ }
+
+ if (nInbound >= nMaxInbound)
+ {
+ if (!AttemptToEvictConnection()) {
+ // No connection to evict, disconnect the new connection
+ LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
+ return;
+ }
+ }
+
+ NodeId id = GetNewNodeId();
+ uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
+
+ ServiceFlags nodeServices = nLocalServices;
+ if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::BloomFilter)) {
+ nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
+ }
+
+ const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
+ CNode* pnode = new CNode(id,
+ nodeServices,
+ std::move(sock),
+ addr,
+ CalculateKeyedNetGroup(addr),
+ nonce,
+ addr_bind,
+ /*addrNameIn=*/"",
+ ConnectionType::INBOUND,
+ inbound_onion);
+ pnode->AddRef();
+ pnode->m_permissionFlags = permissionFlags;
+ pnode->m_prefer_evict = discouraged;
+ m_msgproc->InitializeNode(pnode);
+
+ LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString());
+
+ {
+ LOCK(m_nodes_mutex);
+ m_nodes.push_back(pnode);
+ }
+
+ // We received a new connection, harvest entropy from the time (and our peer count)
+ RandAddEvent((uint32_t)id);
+}
+
+bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type)
+{
+ std::optional<int> max_connections;
+ switch (conn_type) {
+ case ConnectionType::INBOUND:
+ case ConnectionType::MANUAL:
+ return false;
+ case ConnectionType::OUTBOUND_FULL_RELAY:
+ max_connections = m_max_outbound_full_relay;
+ break;
+ case ConnectionType::BLOCK_RELAY:
+ max_connections = m_max_outbound_block_relay;
+ break;
+ // no limit for ADDR_FETCH because -seednode has no limit either
+ case ConnectionType::ADDR_FETCH:
+ break;
+ // no limit for FEELER connections since they're short-lived
+ case ConnectionType::FEELER:
+ break;
+ } // no default case, so the compiler can warn about missing cases
+
+ // Count existing connections
+ int existing_connections = WITH_LOCK(m_nodes_mutex,
+ return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
+
+ // Max connections of specified type already exist
+ if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
+
+ // Max total outbound connections already exist
+ CSemaphoreGrant grant(*semOutbound, true);
+ if (!grant) return false;
+
+ OpenNetworkConnection(CAddress(), false, &grant, address.c_str(), conn_type);
+ return true;
+}
+
+void CConnman::DisconnectNodes()
+{
+ {
+ LOCK(m_nodes_mutex);
+
+ if (!fNetworkActive) {
+ // Disconnect any connected nodes
+ for (CNode* pnode : m_nodes) {
+ if (!pnode->fDisconnect) {
+ LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
+ pnode->fDisconnect = true;
+ }
+ }
+ }
+
+ // Disconnect unused nodes
+ std::vector<CNode*> nodes_copy = m_nodes;
+ for (CNode* pnode : nodes_copy)
+ {
+ if (pnode->fDisconnect)
+ {
+ // remove from m_nodes
+ m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
+
+ // release outbound grant (if any)
+ pnode->grantOutbound.Release();
+
+ // close socket and cleanup
+ pnode->CloseSocketDisconnect();
+
+ // hold in disconnected pool until all refs are released
+ pnode->Release();
+ m_nodes_disconnected.push_back(pnode);
+ }
+ }
+ }
+ {
+ // Delete disconnected nodes
+ std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
+ for (CNode* pnode : nodes_disconnected_copy)
+ {
+ // Destroy the object only after other threads have stopped using it.
+ if (pnode->GetRefCount() <= 0) {
+ m_nodes_disconnected.remove(pnode);
+ DeleteNode(pnode);
+ }
+ }
+ }
+}
+
+void CConnman::NotifyNumConnectionsChanged()
+{
+ size_t nodes_size;
+ {
+ LOCK(m_nodes_mutex);
+ nodes_size = m_nodes.size();
+ }
+ if(nodes_size != nPrevNodeCount) {
+ nPrevNodeCount = nodes_size;
+ if (m_client_interface) {
+ m_client_interface->NotifyNumConnectionsChanged(nodes_size);
+ }
+ }
+}
+
+bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
+{
+ return node.m_connected + m_peer_connect_timeout < now;
+}
+
+bool CConnman::InactivityCheck(const CNode& node) const
+{
+ // Tests that see disconnects after using mocktime can start nodes with a
+ // large timeout. For example, -peertimeout=999999999.
+ const auto now{GetTime<std::chrono::seconds>()};
+ const auto last_send{node.m_last_send.load()};
+ const auto last_recv{node.m_last_recv.load()};
+
+ if (!ShouldRunInactivityChecks(node, now)) return false;
+
+ if (last_recv.count() == 0 || last_send.count() == 0) {
+ LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d peer=%d\n", count_seconds(m_peer_connect_timeout), last_recv.count() != 0, last_send.count() != 0, node.GetId());
+ return true;
+ }
+
+ if (now > last_send + TIMEOUT_INTERVAL) {
+ LogPrint(BCLog::NET, "socket sending timeout: %is peer=%d\n", count_seconds(now - last_send), node.GetId());
+ return true;
+ }
+
+ if (now > last_recv + TIMEOUT_INTERVAL) {
+ LogPrint(BCLog::NET, "socket receive timeout: %is peer=%d\n", count_seconds(now - last_recv), node.GetId());
+ return true;
+ }
+
+ if (!node.fSuccessfullyConnected) {
+ LogPrint(BCLog::NET, "version handshake timeout peer=%d\n", node.GetId());
+ return true;
+ }
+
+ return false;
+}
+
+bool CConnman::GenerateSelectSet(const std::vector<CNode*>& nodes,
+ std::set<SOCKET>& recv_set,
+ std::set<SOCKET>& send_set,
+ std::set<SOCKET>& error_set)
+{
+ for (const ListenSocket& hListenSocket : vhListenSocket) {
+ recv_set.insert(hListenSocket.sock->Get());
+ }
+
+ for (CNode* pnode : nodes) {
+ // Implement the following logic:
+ // * If there is data to send, select() for sending data. As this only
+ // happens when optimistic write failed, we choose to first drain the
+ // write buffer in this case before receiving more. This avoids
+ // needlessly queueing received data, if the remote peer is not themselves
+ // receiving data. This means properly utilizing TCP flow control signalling.
+ // * Otherwise, if there is space left in the receive buffer, select() for
+ // receiving data.
+ // * Hand off all complete messages to the processor, to be handled without
+ // blocking here.
+
+ bool select_recv = !pnode->fPauseRecv;
+ bool select_send;
+ {
+ LOCK(pnode->cs_vSend);
+ select_send = !pnode->vSendMsg.empty();
+ }
+
+ LOCK(pnode->m_sock_mutex);
+ if (!pnode->m_sock) {
+ continue;
+ }
+
+ error_set.insert(pnode->m_sock->Get());
+ if (select_send) {
+ send_set.insert(pnode->m_sock->Get());
+ continue;
+ }
+ if (select_recv) {
+ recv_set.insert(pnode->m_sock->Get());
+ }
+ }
+
+ return !recv_set.empty() || !send_set.empty() || !error_set.empty();
+}
+
+#ifdef USE_POLL
+void CConnman::SocketEvents(const std::vector<CNode*>& nodes,
+ std::set<SOCKET>& recv_set,
+ std::set<SOCKET>& send_set,
+ std::set<SOCKET>& error_set)
+{
+ std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
+ if (!GenerateSelectSet(nodes, recv_select_set, send_select_set, error_select_set)) {
+ interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
+ return;
+ }
+
+ std::unordered_map<SOCKET, struct pollfd> pollfds;
+ for (SOCKET socket_id : recv_select_set) {
+ pollfds[socket_id].fd = socket_id;
+ pollfds[socket_id].events |= POLLIN;
+ }
+
+ for (SOCKET socket_id : send_select_set) {
+ pollfds[socket_id].fd = socket_id;
+ pollfds[socket_id].events |= POLLOUT;
+ }
+
+ for (SOCKET socket_id : error_select_set) {
+ pollfds[socket_id].fd = socket_id;
+ // These flags are ignored, but we set them for clarity
+ pollfds[socket_id].events |= POLLERR|POLLHUP;
+ }
+
+ std::vector<struct pollfd> vpollfds;
+ vpollfds.reserve(pollfds.size());
+ for (auto it : pollfds) {
+ vpollfds.push_back(std::move(it.second));
+ }
+
+ if (poll(vpollfds.data(), vpollfds.size(), SELECT_TIMEOUT_MILLISECONDS) < 0) return;
+
+ if (interruptNet) return;
+
+ for (struct pollfd pollfd_entry : vpollfds) {
+ if (pollfd_entry.revents & POLLIN) recv_set.insert(pollfd_entry.fd);
+ if (pollfd_entry.revents & POLLOUT) send_set.insert(pollfd_entry.fd);
+ if (pollfd_entry.revents & (POLLERR|POLLHUP)) error_set.insert(pollfd_entry.fd);
+ }
+}
+#else
+void CConnman::SocketEvents(const std::vector<CNode*>& nodes,
+ std::set<SOCKET>& recv_set,
+ std::set<SOCKET>& send_set,
+ std::set<SOCKET>& error_set)
+{
+ std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
+ if (!GenerateSelectSet(nodes, recv_select_set, send_select_set, error_select_set)) {
+ interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
+ return;
+ }
+
+ //
+ // Find which sockets have data to receive
+ //
+ struct timeval timeout;
+ timeout.tv_sec = 0;
+ timeout.tv_usec = SELECT_TIMEOUT_MILLISECONDS * 1000; // frequency to poll pnode->vSend
+
+ fd_set fdsetRecv;
+ fd_set fdsetSend;
+ fd_set fdsetError;
+ FD_ZERO(&fdsetRecv);
+ FD_ZERO(&fdsetSend);
+ FD_ZERO(&fdsetError);
+ SOCKET hSocketMax = 0;
+
+ for (SOCKET hSocket : recv_select_set) {
+ FD_SET(hSocket, &fdsetRecv);
+ hSocketMax = std::max(hSocketMax, hSocket);
+ }
+
+ for (SOCKET hSocket : send_select_set) {
+ FD_SET(hSocket, &fdsetSend);
+ hSocketMax = std::max(hSocketMax, hSocket);
+ }
+
+ for (SOCKET hSocket : error_select_set) {
+ FD_SET(hSocket, &fdsetError);
+ hSocketMax = std::max(hSocketMax, hSocket);
+ }
+
+ int nSelect = select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
+
+ if (interruptNet)
+ return;
+
+ if (nSelect == SOCKET_ERROR)
+ {
+ int nErr = WSAGetLastError();
+ LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
+ for (unsigned int i = 0; i <= hSocketMax; i++)
+ FD_SET(i, &fdsetRecv);
+ FD_ZERO(&fdsetSend);
+ FD_ZERO(&fdsetError);
+ if (!interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)))
+ return;
+ }
+
+ for (SOCKET hSocket : recv_select_set) {
+ if (FD_ISSET(hSocket, &fdsetRecv)) {
+ recv_set.insert(hSocket);
+ }
+ }
+
+ for (SOCKET hSocket : send_select_set) {
+ if (FD_ISSET(hSocket, &fdsetSend)) {
+ send_set.insert(hSocket);
+ }
+ }
+
+ for (SOCKET hSocket : error_select_set) {
+ if (FD_ISSET(hSocket, &fdsetError)) {
+ error_set.insert(hSocket);
+ }
+ }
+}
+#endif
+
+void CConnman::SocketHandler()
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+
+ std::set<SOCKET> recv_set;
+ std::set<SOCKET> send_set;
+ std::set<SOCKET> error_set;
+
+ {
+ const NodesSnapshot snap{*this, /*shuffle=*/false};
+
+ // Check for the readiness of the already connected sockets and the
+ // listening sockets in one call ("readiness" as in poll(2) or
+ // select(2)). If none are ready, wait for a short while and return
+ // empty sets.
+ SocketEvents(snap.Nodes(), recv_set, send_set, error_set);
+
+ // Service (send/receive) each of the already connected nodes.
+ SocketHandlerConnected(snap.Nodes(), recv_set, send_set, error_set);
+ }
+
+ // Accept new connections from listening sockets.
+ SocketHandlerListening(recv_set);
+}
+
+void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
+ const std::set<SOCKET>& recv_set,
+ const std::set<SOCKET>& send_set,
+ const std::set<SOCKET>& error_set)
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+
+ for (CNode* pnode : nodes) {
+ if (interruptNet)
+ return;
+
+ //
+ // Receive
+ //
+ bool recvSet = false;
+ bool sendSet = false;
+ bool errorSet = false;
+ {
+ LOCK(pnode->m_sock_mutex);
+ if (!pnode->m_sock) {
+ continue;
+ }
+ recvSet = recv_set.count(pnode->m_sock->Get()) > 0;
+ sendSet = send_set.count(pnode->m_sock->Get()) > 0;
+ errorSet = error_set.count(pnode->m_sock->Get()) > 0;
+ }
+ if (recvSet || errorSet)
+ {
+ // typical socket buffer is 8K-64K
+ uint8_t pchBuf[0x10000];
+ int nBytes = 0;
+ {
+ LOCK(pnode->m_sock_mutex);
+ if (!pnode->m_sock) {
+ continue;
+ }
+ nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
+ }
+ if (nBytes > 0)
+ {
+ bool notify = false;
+ if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
+ pnode->CloseSocketDisconnect();
+ }
+ RecordBytesRecv(nBytes);
+ if (notify) {
+ size_t nSizeAdded = 0;
+ auto it(pnode->vRecvMsg.begin());
+ for (; it != pnode->vRecvMsg.end(); ++it) {
+ // vRecvMsg contains only completed CNetMessage
+ // the single possible partially deserialized message are held by TransportDeserializer
+ nSizeAdded += it->m_raw_message_size;
+ }
+ {
+ LOCK(pnode->cs_vProcessMsg);
+ pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it);
+ pnode->nProcessQueueSize += nSizeAdded;
+ pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize;
+ }
+ WakeMessageHandler();
+ }
+ }
+ else if (nBytes == 0)
+ {
+ // socket closed gracefully
+ if (!pnode->fDisconnect) {
+ LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
+ }
+ pnode->CloseSocketDisconnect();
+ }
+ else if (nBytes < 0)
+ {
+ // error
+ int nErr = WSAGetLastError();
+ if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
+ {
+ if (!pnode->fDisconnect) {
+ LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
+ }
+ pnode->CloseSocketDisconnect();
+ }
+ }
+ }
+
+ if (sendSet) {
+ // Send data
+ size_t bytes_sent = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
+ if (bytes_sent) RecordBytesSent(bytes_sent);
+ }
+
+ if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
+ }
+}
+
+void CConnman::SocketHandlerListening(const std::set<SOCKET>& recv_set)
+{
+ for (const ListenSocket& listen_socket : vhListenSocket) {
+ if (interruptNet) {
+ return;
+ }
+ if (recv_set.count(listen_socket.sock->Get()) > 0) {
+ AcceptConnection(listen_socket);
+ }
+ }
+}
+
+void CConnman::ThreadSocketHandler()
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+
+ SetSyscallSandboxPolicy(SyscallSandboxPolicy::NET);
+ while (!interruptNet)
+ {
+ DisconnectNodes();
+ NotifyNumConnectionsChanged();
+ SocketHandler();
+ }
+}
+
+void CConnman::WakeMessageHandler()
+{
+ {
+ LOCK(mutexMsgProc);
+ fMsgProcWake = true;
+ }
+ condMsgProc.notify_one();
+}
+
+void CConnman::ThreadDNSAddressSeed()
+{
+ SetSyscallSandboxPolicy(SyscallSandboxPolicy::INITIALIZATION_DNS_SEED);
+ FastRandomContext rng;
+ std::vector<std::string> seeds = Params().DNSSeeds();
+ Shuffle(seeds.begin(), seeds.end(), rng);
+ int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
+ int found = 0;
+
+ if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
+ // When -forcednsseed is provided, query all.
+ seeds_right_now = seeds.size();
+ } else if (addrman.size() == 0) {
+ // If we have no known peers, query all.
+ // This will occur on the first run, or if peers.dat has been
+ // deleted.
+ seeds_right_now = seeds.size();
+ }
+
+ // goal: only query DNS seed if address need is acute
+ // * If we have a reasonable number of peers in addrman, spend
+ // some time trying them first. This improves user privacy by
+ // creating fewer identifying DNS requests, reduces trust by
+ // giving seeds less influence on the network topology, and
+ // reduces traffic to the seeds.
+ // * When querying DNS seeds query a few at once, this ensures
+ // that we don't give DNS seeds the ability to eclipse nodes
+ // that query them.
+ // * If we continue having problems, eventually query all the
+ // DNS seeds, and if that fails too, also try the fixed seeds.
+ // (done in ThreadOpenConnections)
+ const std::chrono::seconds seeds_wait_time = (addrman.size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
+
+ for (const std::string& seed : seeds) {
+ if (seeds_right_now == 0) {
+ seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
+
+ if (addrman.size() > 0) {
+ LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
+ std::chrono::seconds to_wait = seeds_wait_time;
+ while (to_wait.count() > 0) {
+ // if sleeping for the MANY_PEERS interval, wake up
+ // early to see if we have enough peers and can stop
+ // this thread entirely freeing up its resources
+ std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
+ if (!interruptNet.sleep_for(w)) return;
+ to_wait -= w;
+
+ int nRelevant = 0;
+ {
+ LOCK(m_nodes_mutex);
+ for (const CNode* pnode : m_nodes) {
+ if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
+ }
+ }
+ if (nRelevant >= 2) {
+ if (found > 0) {
+ LogPrintf("%d addresses found from DNS seeds\n", found);
+ LogPrintf("P2P peers available. Finished DNS seeding.\n");
+ } else {
+ LogPrintf("P2P peers available. Skipped DNS seeding.\n");
+ }
+ return;
+ }
+ }
+ }
+ }
+
+ if (interruptNet) return;
+
+ // hold off on querying seeds if P2P network deactivated
+ if (!fNetworkActive) {
+ LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
+ do {
+ if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
+ } while (!fNetworkActive);
+ }
+
+ LogPrintf("Loading addresses from DNS seed %s\n", seed);
+ if (HaveNameProxy()) {
+ AddAddrFetch(seed);
+ } else {
+ std::vector<CNetAddr> vIPs;
+ std::vector<CAddress> vAdd;
+ ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE);
+ std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
+ CNetAddr resolveSource;
+ if (!resolveSource.SetInternal(host)) {
+ continue;
+ }
+ unsigned int nMaxIPs = 256; // Limits number of IPs learned from a DNS seed
+ if (LookupHost(host, vIPs, nMaxIPs, true)) {
+ for (const CNetAddr& ip : vIPs) {
+ int nOneDay = 24*3600;
+ CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits);
+ addr.nTime = GetTime() - 3*nOneDay - rng.randrange(4*nOneDay); // use a random age between 3 and 7 days old
+ vAdd.push_back(addr);
+ found++;
+ }
+ addrman.Add(vAdd, resolveSource);
+ } else {
+ // We now avoid directly using results from DNS Seeds which do not support service bit filtering,
+ // instead using them as a addrfetch to get nodes with our desired service bits.
+ AddAddrFetch(seed);
+ }
+ }
+ --seeds_right_now;
+ }
+ LogPrintf("%d addresses found from DNS seeds\n", found);
+}
+
+void CConnman::DumpAddresses()
+{
+ int64_t nStart = GetTimeMillis();
+
+ DumpPeerAddresses(::gArgs, addrman);
+
+ LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
+ addrman.size(), GetTimeMillis() - nStart);
+}
+
+void CConnman::ProcessAddrFetch()
+{
+ std::string strDest;
+ {
+ LOCK(m_addr_fetches_mutex);
+ if (m_addr_fetches.empty())
+ return;
+ strDest = m_addr_fetches.front();
+ m_addr_fetches.pop_front();
+ }
+ CAddress addr;
+ CSemaphoreGrant grant(*semOutbound, true);
+ if (grant) {
+ OpenNetworkConnection(addr, false, &grant, strDest.c_str(), ConnectionType::ADDR_FETCH);
+ }
+}
+
+bool CConnman::GetTryNewOutboundPeer() const
+{
+ return m_try_another_outbound_peer;
+}
+
+void CConnman::SetTryNewOutboundPeer(bool flag)
+{
+ m_try_another_outbound_peer = flag;
+ LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false");
+}
+
+// Return the number of peers we have over our outbound connection limit
+// Exclude peers that are marked for disconnect, or are going to be
+// disconnected soon (eg ADDR_FETCH and FEELER)
+// Also exclude peers that haven't finished initial connection handshake yet
+// (so that we don't decide we're over our desired connection limit, and then
+// evict some peer that has finished the handshake)
+int CConnman::GetExtraFullOutboundCount() const
+{
+ int full_outbound_peers = 0;
+ {
+ LOCK(m_nodes_mutex);
+ for (const CNode* pnode : m_nodes) {
+ if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
+ ++full_outbound_peers;
+ }
+ }
+ }
+ return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
+}
+
+int CConnman::GetExtraBlockRelayCount() const
+{
+ int block_relay_peers = 0;
+ {
+ LOCK(m_nodes_mutex);
+ for (const CNode* pnode : m_nodes) {
+ if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
+ ++block_relay_peers;
+ }
+ }
+ }
+ return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
+}
+
+void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
+{
+ SetSyscallSandboxPolicy(SyscallSandboxPolicy::NET_OPEN_CONNECTION);
+ // Connect to specific addresses
+ if (!connect.empty())
+ {
+ for (int64_t nLoop = 0;; nLoop++)
+ {
+ ProcessAddrFetch();
+ for (const std::string& strAddr : connect)
+ {
+ CAddress addr(CService(), NODE_NONE);
+ OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), ConnectionType::MANUAL);
+ for (int i = 0; i < 10 && i < nLoop; i++)
+ {
+ if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
+ return;
+ }
+ }
+ if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
+ return;
+ }
+ }
+
+ // Initiate network connections
+ auto start = GetTime<std::chrono::microseconds>();
+
+ // Minimum time before next feeler connection (in microseconds).
+ auto next_feeler = GetExponentialRand(start, FEELER_INTERVAL);
+ auto next_extra_block_relay = GetExponentialRand(start, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
+ const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
+ bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
+
+ if (!add_fixed_seeds) {
+ LogPrintf("Fixed seeds are disabled\n");
+ }
+
+ while (!interruptNet)
+ {
+ ProcessAddrFetch();
+
+ if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
+ return;
+
+ CSemaphoreGrant grant(*semOutbound);
+ if (interruptNet)
+ return;
+
+ if (add_fixed_seeds && addrman.size() == 0) {
+ // When the node starts with an empty peers.dat, there are a few other sources of peers before
+ // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
+ // If none of those are available, we fallback on to fixed seeds immediately, else we allow
+ // 60 seconds for any of those sources to populate addrman.
+ bool add_fixed_seeds_now = false;
+ // It is cheapest to check if enough time has passed first.
+ if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
+ add_fixed_seeds_now = true;
+ LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty\n");
+ }
+
+ // Checking !dnsseed is cheaper before locking 2 mutexes.
+ if (!add_fixed_seeds_now && !dnsseed) {
+ LOCK2(m_addr_fetches_mutex, m_added_nodes_mutex);
+ if (m_addr_fetches.empty() && m_added_nodes.empty()) {
+ add_fixed_seeds_now = true;
+ LogPrintf("Adding fixed seeds as -dnsseed=0, -addnode is not provided and all -seednode(s) attempted\n");
+ }
+ }
+
+ if (add_fixed_seeds_now) {
+ CNetAddr local;
+ local.SetInternal("fixedseeds");
+ addrman.Add(ConvertSeeds(Params().FixedSeeds()), local);
+ add_fixed_seeds = false;
+ }
+ }
+
+ //
+ // Choose an address to connect to based on most recently seen
+ //
+ CAddress addrConnect;
+
+ // Only connect out to one peer per network group (/16 for IPv4).
+ int nOutboundFullRelay = 0;
+ int nOutboundBlockRelay = 0;
+ std::set<std::vector<unsigned char> > setConnected;
+
+ {
+ LOCK(m_nodes_mutex);
+ for (const CNode* pnode : m_nodes) {
+ if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
+ if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
+
+ // Netgroups for inbound and manual peers are not excluded because our goal here
+ // is to not use multiple of our limited outbound slots on a single netgroup
+ // but inbound and manual peers do not use our outbound slots. Inbound peers
+ // also have the added issue that they could be attacker controlled and used
+ // to prevent us from connecting to particular hosts if we used them here.
+ switch (pnode->m_conn_type) {
+ case ConnectionType::INBOUND:
+ case ConnectionType::MANUAL:
+ break;
+ case ConnectionType::OUTBOUND_FULL_RELAY:
+ case ConnectionType::BLOCK_RELAY:
+ case ConnectionType::ADDR_FETCH:
+ case ConnectionType::FEELER:
+ setConnected.insert(m_netgroupman.GetGroup(pnode->addr));
+ } // no default case, so the compiler can warn about missing cases
+ }
+ }
+
+ ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
+ auto now = GetTime<std::chrono::microseconds>();
+ bool anchor = false;
+ bool fFeeler = false;
+
+ // Determine what type of connection to open. Opening
+ // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
+ // priority. Then we open OUTBOUND_FULL_RELAY priority until we
+ // meet our full-relay capacity. Then we open BLOCK_RELAY connection
+ // until we hit our block-relay-only peer limit.
+ // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
+ // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
+ // these conditions are met, check to see if it's time to try an extra
+ // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
+ // timer to decide if we should open a FEELER.
+
+ if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
+ conn_type = ConnectionType::BLOCK_RELAY;
+ anchor = true;
+ } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
+ // OUTBOUND_FULL_RELAY
+ } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
+ conn_type = ConnectionType::BLOCK_RELAY;
+ } else if (GetTryNewOutboundPeer()) {
+ // OUTBOUND_FULL_RELAY
+ } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
+ // Periodically connect to a peer (using regular outbound selection
+ // methodology from addrman) and stay connected long enough to sync
+ // headers, but not much else.
+ //
+ // Then disconnect the peer, if we haven't learned anything new.
+ //
+ // The idea is to make eclipse attacks very difficult to pull off,
+ // because every few minutes we're finding a new peer to learn headers
+ // from.
+ //
+ // This is similar to the logic for trying extra outbound (full-relay)
+ // peers, except:
+ // - we do this all the time on an exponential timer, rather than just when
+ // our tip is stale
+ // - we potentially disconnect our next-youngest block-relay-only peer, if our
+ // newest block-relay-only peer delivers a block more recently.
+ // See the eviction logic in net_processing.cpp.
+ //
+ // Because we can promote these connections to block-relay-only
+ // connections, they do not get their own ConnectionType enum
+ // (similar to how we deal with extra outbound peers).
+ next_extra_block_relay = GetExponentialRand(now, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
+ conn_type = ConnectionType::BLOCK_RELAY;
+ } else if (now > next_feeler) {
+ next_feeler = GetExponentialRand(now, FEELER_INTERVAL);
+ conn_type = ConnectionType::FEELER;
+ fFeeler = true;
+ } else {
+ // skip to next iteration of while loop
+ continue;
+ }
+
+ addrman.ResolveCollisions();
+
+ int64_t nANow = GetAdjustedTime();
+ int nTries = 0;
+ while (!interruptNet)
+ {
+ if (anchor && !m_anchors.empty()) {
+ const CAddress addr = m_anchors.back();
+ m_anchors.pop_back();
+ if (!addr.IsValid() || IsLocal(addr) || !IsReachable(addr) ||
+ !HasAllDesirableServiceFlags(addr.nServices) ||
+ setConnected.count(m_netgroupman.GetGroup(addr))) continue;
+ addrConnect = addr;
+ LogPrint(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToString());
+ break;
+ }
+
+ // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
+ // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
+ // already-connected network ranges, ...) before trying new addrman addresses.
+ nTries++;
+ if (nTries > 100)
+ break;
+
+ CAddress addr;
+ int64_t addr_last_try{0};
+
+ if (fFeeler) {
+ // First, try to get a tried table collision address. This returns
+ // an empty (invalid) address if there are no collisions to try.
+ std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
+
+ if (!addr.IsValid()) {
+ // No tried table collisions. Select a new table address
+ // for our feeler.
+ std::tie(addr, addr_last_try) = addrman.Select(true);
+ } else if (AlreadyConnectedToAddress(addr)) {
+ // If test-before-evict logic would have us connect to a
+ // peer that we're already connected to, just mark that
+ // address as Good(). We won't be able to initiate the
+ // connection anyway, so this avoids inadvertently evicting
+ // a currently-connected peer.
+ addrman.Good(addr);
+ // Select a new table address for our feeler instead.
+ std::tie(addr, addr_last_try) = addrman.Select(true);
+ }
+ } else {
+ // Not a feeler
+ std::tie(addr, addr_last_try) = addrman.Select();
+ }
+
+ // Require outbound connections, other than feelers, to be to distinct network groups
+ if (!fFeeler && setConnected.count(m_netgroupman.GetGroup(addr))) {
+ break;
+ }
+
+ // if we selected an invalid or local address, restart
+ if (!addr.IsValid() || IsLocal(addr)) {
+ break;
+ }
+
+ if (!IsReachable(addr))
+ continue;
+
+ // only consider very recently tried nodes after 30 failed attempts
+ if (nANow - addr_last_try < 600 && nTries < 30)
+ continue;
+
+ // for non-feelers, require all the services we'll want,
+ // for feelers, only require they be a full node (only because most
+ // SPV clients don't have a good address DB available)
+ if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
+ continue;
+ } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
+ continue;
+ }
+
+ // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
+ if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
+ continue;
+ }
+
+ addrConnect = addr;
+ break;
+ }
+
+ if (addrConnect.IsValid()) {
+
+ if (fFeeler) {
+ // Add small amount of random noise before connection to avoid synchronization.
+ int randsleep = GetRand<int>(FEELER_SLEEP_WINDOW * 1000);
+ if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep)))
+ return;
+ LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString());
+ }
+
+ OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, conn_type);
+ }
+ }
+}
+
+std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
+{
+ std::vector<CAddress> ret;
+ LOCK(m_nodes_mutex);
+ for (const CNode* pnode : m_nodes) {
+ if (pnode->IsBlockOnlyConn()) {
+ ret.push_back(pnode->addr);
+ }
+ }
+
+ return ret;
+}
+
+std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo() const
+{
+ std::vector<AddedNodeInfo> ret;
+
+ std::list<std::string> lAddresses(0);
+ {
+ LOCK(m_added_nodes_mutex);
+ ret.reserve(m_added_nodes.size());
+ std::copy(m_added_nodes.cbegin(), m_added_nodes.cend(), std::back_inserter(lAddresses));
+ }
+
+
+ // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
+ std::map<CService, bool> mapConnected;
+ std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
+ {
+ LOCK(m_nodes_mutex);
+ for (const CNode* pnode : m_nodes) {
+ if (pnode->addr.IsValid()) {
+ mapConnected[pnode->addr] = pnode->IsInboundConn();
+ }
+ std::string addrName{pnode->m_addr_name};
+ if (!addrName.empty()) {
+ mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
+ }
+ }
+ }
+
+ for (const std::string& strAddNode : lAddresses) {
+ CService service(LookupNumeric(strAddNode, Params().GetDefaultPort(strAddNode)));
+ AddedNodeInfo addedNode{strAddNode, CService(), false, false};
+ if (service.IsValid()) {
+ // strAddNode is an IP:port
+ auto it = mapConnected.find(service);
+ if (it != mapConnected.end()) {
+ addedNode.resolvedAddress = service;
+ addedNode.fConnected = true;
+ addedNode.fInbound = it->second;
+ }
+ } else {
+ // strAddNode is a name
+ auto it = mapConnectedByName.find(strAddNode);
+ if (it != mapConnectedByName.end()) {
+ addedNode.resolvedAddress = it->second.second;
+ addedNode.fConnected = true;
+ addedNode.fInbound = it->second.first;
+ }
+ }
+ ret.emplace_back(std::move(addedNode));
+ }
+
+ return ret;
+}
+
+void CConnman::ThreadOpenAddedConnections()
+{
+ SetSyscallSandboxPolicy(SyscallSandboxPolicy::NET_ADD_CONNECTION);
+ while (true)
+ {
+ CSemaphoreGrant grant(*semAddnode);
+ std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
+ bool tried = false;
+ for (const AddedNodeInfo& info : vInfo) {
+ if (!info.fConnected) {
+ if (!grant.TryAcquire()) {
+ // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
+ // the addednodeinfo state might change.
+ break;
+ }
+ tried = true;
+ CAddress addr(CService(), NODE_NONE);
+ OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), ConnectionType::MANUAL);
+ if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
+ return;
+ }
+ }
+ // Retry every 60 seconds if a connection was attempted, otherwise two seconds
+ if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
+ return;
+ }
+}
+
+// if successful, this moves the passed grant to the constructed node
+void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, ConnectionType conn_type)
+{
+ assert(conn_type != ConnectionType::INBOUND);
+
+ //
+ // Initiate outbound network connection
+ //
+ if (interruptNet) {
+ return;
+ }
+ if (!fNetworkActive) {
+ return;
+ }
+ if (!pszDest) {
+ bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
+ if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
+ return;
+ }
+ } else if (FindNode(std::string(pszDest)))
+ return;
+
+ CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type);
+
+ if (!pnode)
+ return;
+ if (grantOutbound)
+ grantOutbound->MoveTo(pnode->grantOutbound);
+
+ m_msgproc->InitializeNode(pnode);
+ {
+ LOCK(m_nodes_mutex);
+ m_nodes.push_back(pnode);
+ }
+}
+
+void CConnman::ThreadMessageHandler()
+{
+ SetSyscallSandboxPolicy(SyscallSandboxPolicy::MESSAGE_HANDLER);
+ while (!flagInterruptMsgProc)
+ {
+ bool fMoreWork = false;
+
+ {
+ // Randomize the order in which we process messages from/to our peers.
+ // This prevents attacks in which an attacker exploits having multiple
+ // consecutive connections in the m_nodes list.
+ const NodesSnapshot snap{*this, /*shuffle=*/true};
+
+ for (CNode* pnode : snap.Nodes()) {
+ if (pnode->fDisconnect)
+ continue;
+
+ // Receive messages
+ bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
+ fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
+ if (flagInterruptMsgProc)
+ return;
+ // Send messages
+ {
+ LOCK(pnode->cs_sendProcessing);
+ m_msgproc->SendMessages(pnode);
+ }
+
+ if (flagInterruptMsgProc)
+ return;
+ }
+ }
+
+ WAIT_LOCK(mutexMsgProc, lock);
+ if (!fMoreWork) {
+ condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
+ }
+ fMsgProcWake = false;
+ }
+}
+
+void CConnman::ThreadI2PAcceptIncoming()
+{
+ static constexpr auto err_wait_begin = 1s;
+ static constexpr auto err_wait_cap = 5min;
+ auto err_wait = err_wait_begin;
+
+ bool advertising_listen_addr = false;
+ i2p::Connection conn;
+
+ while (!interruptNet) {
+
+ if (!m_i2p_sam_session->Listen(conn)) {
+ if (advertising_listen_addr && conn.me.IsValid()) {
+ RemoveLocal(conn.me);
+ advertising_listen_addr = false;
+ }
+
+ interruptNet.sleep_for(err_wait);
+ if (err_wait < err_wait_cap) {
+ err_wait *= 2;
+ }
+
+ continue;
+ }
+
+ if (!advertising_listen_addr) {
+ AddLocal(conn.me, LOCAL_MANUAL);
+ advertising_listen_addr = true;
+ }
+
+ if (!m_i2p_sam_session->Accept(conn)) {
+ continue;
+ }
+
+ CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None,
+ CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE});
+ }
+}
+
+bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
+{
+ int nOne = 1;
+
+ // Create socket for listening for incoming connections
+ struct sockaddr_storage sockaddr;
+ socklen_t len = sizeof(sockaddr);
+ if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
+ {
+ strError = strprintf(Untranslated("Error: Bind address family for %s not supported"), addrBind.ToString());
+ LogPrintf("%s\n", strError.original);
+ return false;
+ }
+
+ std::unique_ptr<Sock> sock = CreateSock(addrBind);
+ if (!sock) {
+ strError = strprintf(Untranslated("Error: Couldn't open socket for incoming connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError()));
+ LogPrintf("%s\n", strError.original);
+ return false;
+ }
+
+ // Allow binding if the port is still in TIME_WAIT state after
+ // the program was closed and restarted.
+ if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
+ strError = strprintf(Untranslated("Error setting SO_REUSEADDR on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
+ LogPrintf("%s\n", strError.original);
+ }
+
+ // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
+ // and enable it by default or not. Try to enable it, if possible.
+ if (addrBind.IsIPv6()) {
+#ifdef IPV6_V6ONLY
+ if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
+ strError = strprintf(Untranslated("Error setting IPV6_V6ONLY on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
+ LogPrintf("%s\n", strError.original);
+ }
+#endif
+#ifdef WIN32
+ int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
+ if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
+ strError = strprintf(Untranslated("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
+ LogPrintf("%s\n", strError.original);
+ }
+#endif
+ }
+
+ if (::bind(sock->Get(), (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
+ {
+ int nErr = WSAGetLastError();
+ if (nErr == WSAEADDRINUSE)
+ strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), PACKAGE_NAME);
+ else
+ strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr));
+ LogPrintf("%s\n", strError.original);
+ return false;
+ }
+ LogPrintf("Bound to %s\n", addrBind.ToString());
+
+ // Listen for incoming connections
+ if (listen(sock->Get(), SOMAXCONN) == SOCKET_ERROR)
+ {
+ strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
+ LogPrintf("%s\n", strError.original);
+ return false;
+ }
+
+ vhListenSocket.emplace_back(std::move(sock), permissions);
+ return true;
+}
+
+void Discover()
+{
+ if (!fDiscover)
+ return;
+
+#ifdef WIN32
+ // Get local host IP
+ char pszHostName[256] = "";
+ if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
+ {
+ std::vector<CNetAddr> vaddr;
+ if (LookupHost(pszHostName, vaddr, 0, true))
+ {
+ for (const CNetAddr &addr : vaddr)
+ {
+ if (AddLocal(addr, LOCAL_IF))
+ LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
+ }
+ }
+ }
+#elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
+ // Get local host ip
+ struct ifaddrs* myaddrs;
+ if (getifaddrs(&myaddrs) == 0)
+ {
+ for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
+ {
+ if (ifa->ifa_addr == nullptr) continue;
+ if ((ifa->ifa_flags & IFF_UP) == 0) continue;
+ if (strcmp(ifa->ifa_name, "lo") == 0) continue;
+ if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
+ if (ifa->ifa_addr->sa_family == AF_INET)
+ {
+ struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
+ CNetAddr addr(s4->sin_addr);
+ if (AddLocal(addr, LOCAL_IF))
+ LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
+ }
+ else if (ifa->ifa_addr->sa_family == AF_INET6)
+ {
+ struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
+ CNetAddr addr(s6->sin6_addr);
+ if (AddLocal(addr, LOCAL_IF))
+ LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
+ }
+ }
+ freeifaddrs(myaddrs);
+ }
+#endif
+}
+
+void CConnman::SetNetworkActive(bool active)
+{
+ LogPrintf("%s: %s\n", __func__, active);
+
+ if (fNetworkActive == active) {
+ return;
+ }
+
+ fNetworkActive = active;
+
+ if (m_client_interface) {
+ m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
+ }
+}
+
+CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
+ const NetGroupManager& netgroupman, bool network_active)
+ : addrman(addrman_in)
+ , m_netgroupman{netgroupman}
+ , nSeed0(nSeed0In)
+ , nSeed1(nSeed1In)
+{
+ SetTryNewOutboundPeer(false);
+
+ Options connOptions;
+ Init(connOptions);
+ SetNetworkActive(network_active);
+}
+
+NodeId CConnman::GetNewNodeId()
+{
+ return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
+}
+
+
+bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
+{
+ const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
+
+ if (!(flags & BF_EXPLICIT) && !IsReachable(addr)) {
+ return false;
+ }
+ bilingual_str strError;
+ if (!BindListenPort(addr, strError, permissions)) {
+ if ((flags & BF_REPORT_ERROR) && m_client_interface) {
+ m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
+ }
+ return false;
+ }
+
+ if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
+ AddLocal(addr, LOCAL_BIND);
+ }
+
+ return true;
+}
+
+bool CConnman::InitBinds(const Options& options)
+{
+ bool fBound = false;
+ for (const auto& addrBind : options.vBinds) {
+ fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR), NetPermissionFlags::None);
+ }
+ for (const auto& addrBind : options.vWhiteBinds) {
+ fBound |= Bind(addrBind.m_service, (BF_EXPLICIT | BF_REPORT_ERROR), addrBind.m_flags);
+ }
+ for (const auto& addr_bind : options.onion_binds) {
+ fBound |= Bind(addr_bind, BF_EXPLICIT | BF_DONT_ADVERTISE, NetPermissionFlags::None);
+ }
+ if (options.bind_on_any) {
+ struct in_addr inaddr_any;
+ inaddr_any.s_addr = htonl(INADDR_ANY);
+ struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
+ fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE, NetPermissionFlags::None);
+ fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE, NetPermissionFlags::None);
+ }
+ return fBound;
+}
+
+bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+ Init(connOptions);
+
+ if (fListen && !InitBinds(connOptions)) {
+ if (m_client_interface) {
+ m_client_interface->ThreadSafeMessageBox(
+ _("Failed to listen on any port. Use -listen=0 if you want this."),
+ "", CClientUIInterface::MSG_ERROR);
+ }
+ return false;
+ }
+
+ Proxy i2p_sam;
+ if (GetProxy(NET_I2P, i2p_sam)) {
+ m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
+ i2p_sam.proxy, &interruptNet);
+ }
+
+ for (const auto& strDest : connOptions.vSeedNodes) {
+ AddAddrFetch(strDest);
+ }
+
+ if (m_use_addrman_outgoing) {
+ // Load addresses from anchors.dat
+ m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
+ if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
+ m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
+ }
+ LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
+ }
+
+ if (m_client_interface) {
+ m_client_interface->InitMessage(_("Starting network threads…").translated);
+ }
+
+ fAddressesInitialized = true;
+
+ if (semOutbound == nullptr) {
+ // initialize semaphore
+ semOutbound = std::make_unique<CSemaphore>(std::min(m_max_outbound, nMaxConnections));
+ }
+ if (semAddnode == nullptr) {
+ // initialize semaphore
+ semAddnode = std::make_unique<CSemaphore>(nMaxAddnode);
+ }
+
+ //
+ // Start threads
+ //
+ assert(m_msgproc);
+ InterruptSocks5(false);
+ interruptNet.reset();
+ flagInterruptMsgProc = false;
+
+ {
+ LOCK(mutexMsgProc);
+ fMsgProcWake = false;
+ }
+
+ // Send and receive from sockets, accept connections
+ threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
+
+ if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
+ LogPrintf("DNS seeding disabled\n");
+ else
+ threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
+
+ // Initiate manual connections
+ threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
+
+ if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
+ if (m_client_interface) {
+ m_client_interface->ThreadSafeMessageBox(
+ _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
+ "", CClientUIInterface::MSG_ERROR);
+ }
+ return false;
+ }
+ if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
+ threadOpenConnections = std::thread(
+ &util::TraceThread, "opencon",
+ [this, connect = connOptions.m_specified_outgoing] { ThreadOpenConnections(connect); });
+ }
+
+ // Process messages
+ threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
+
+ if (connOptions.m_i2p_accept_incoming && m_i2p_sam_session.get() != nullptr) {
+ threadI2PAcceptIncoming =
+ std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
+ }
+
+ // Dump network addresses
+ scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
+
+ return true;
+}
+
+class CNetCleanup
+{
+public:
+ CNetCleanup() {}
+
+ ~CNetCleanup()
+ {
+#ifdef WIN32
+ // Shutdown Windows Sockets
+ WSACleanup();
+#endif
+ }
+};
+static CNetCleanup instance_of_cnetcleanup;
+
+void CConnman::Interrupt()
+{
+ {
+ LOCK(mutexMsgProc);
+ flagInterruptMsgProc = true;
+ }
+ condMsgProc.notify_all();
+
+ interruptNet();
+ InterruptSocks5(true);
+
+ if (semOutbound) {
+ for (int i=0; i<m_max_outbound; i++) {
+ semOutbound->post();
+ }
+ }
+
+ if (semAddnode) {
+ for (int i=0; i<nMaxAddnode; i++) {
+ semAddnode->post();
+ }
+ }
+}
+
+void CConnman::StopThreads()
+{
+ if (threadI2PAcceptIncoming.joinable()) {
+ threadI2PAcceptIncoming.join();
+ }
+ if (threadMessageHandler.joinable())
+ threadMessageHandler.join();
+ if (threadOpenConnections.joinable())
+ threadOpenConnections.join();
+ if (threadOpenAddedConnections.joinable())
+ threadOpenAddedConnections.join();
+ if (threadDNSAddressSeed.joinable())
+ threadDNSAddressSeed.join();
+ if (threadSocketHandler.joinable())
+ threadSocketHandler.join();
+}
+
+void CConnman::StopNodes()
+{
+ if (fAddressesInitialized) {
+ DumpAddresses();
+ fAddressesInitialized = false;
+
+ if (m_use_addrman_outgoing) {
+ // Anchor connections are only dumped during clean shutdown.
+ std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
+ if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
+ anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
+ }
+ DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
+ }
+ }
+
+ // Delete peer connections.
+ std::vector<CNode*> nodes;
+ WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
+ for (CNode* pnode : nodes) {
+ pnode->CloseSocketDisconnect();
+ DeleteNode(pnode);
+ }
+
+ for (CNode* pnode : m_nodes_disconnected) {
+ DeleteNode(pnode);
+ }
+ m_nodes_disconnected.clear();
+ vhListenSocket.clear();
+ semOutbound.reset();
+ semAddnode.reset();
+}
+
+void CConnman::DeleteNode(CNode* pnode)
+{
+ assert(pnode);
+ m_msgproc->FinalizeNode(*pnode);
+ delete pnode;
+}
+
+CConnman::~CConnman()
+{
+ Interrupt();
+ Stop();
+}
+
+std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network) const
+{
+ std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network);
+ if (m_banman) {
+ addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
+ [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
+ addresses.end());
+ }
+ return addresses;
+}
+
+std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
+{
+ auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
+ uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
+ .Write(requestor.addr.GetNetwork())
+ .Write(local_socket_bytes.data(), local_socket_bytes.size())
+ .Finalize();
+ const auto current_time = GetTime<std::chrono::microseconds>();
+ auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
+ CachedAddrResponse& cache_entry = r.first->second;
+ if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
+ cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
+ // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
+ // and the usefulness of ADDR responses to honest users.
+ //
+ // Longer cache lifetime makes it more difficult for an attacker to scrape
+ // enough AddrMan data to maliciously infer something useful.
+ // By the time an attacker scraped enough AddrMan records, most of
+ // the records should be old enough to not leak topology info by
+ // e.g. analyzing real-time changes in timestamps.
+ //
+ // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
+ // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
+ // most of it could be scraped (considering that timestamps are updated via
+ // ADDR self-announcements and when nodes communicate).
+ // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
+ // (because even several timestamps of the same handful of nodes may leak privacy).
+ //
+ // On the other hand, longer cache lifetime makes ADDR responses
+ // outdated and less useful for an honest requestor, e.g. if most nodes
+ // in the ADDR response are no longer active.
+ //
+ // However, the churn in the network is known to be rather low. Since we consider
+ // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
+ // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
+ // in terms of the freshness of the response.
+ cache_entry.m_cache_entry_expiration = current_time + std::chrono::hours(21) + GetRandMillis(std::chrono::hours(6));
+ }
+ return cache_entry.m_addrs_response_cache;
+}
+
+bool CConnman::AddNode(const std::string& strNode)
+{
+ LOCK(m_added_nodes_mutex);
+ for (const std::string& it : m_added_nodes) {
+ if (strNode == it) return false;
+ }
+
+ m_added_nodes.push_back(strNode);
+ return true;
+}
+
+bool CConnman::RemoveAddedNode(const std::string& strNode)
+{
+ LOCK(m_added_nodes_mutex);
+ for(std::vector<std::string>::iterator it = m_added_nodes.begin(); it != m_added_nodes.end(); ++it) {
+ if (strNode == *it) {
+ m_added_nodes.erase(it);
+ return true;
+ }
+ }
+ return false;
+}
+
+size_t CConnman::GetNodeCount(ConnectionDirection flags) const
+{
+ LOCK(m_nodes_mutex);
+ if (flags == ConnectionDirection::Both) // Shortcut if we want total
+ return m_nodes.size();
+
+ int nNum = 0;
+ for (const auto& pnode : m_nodes) {
+ if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
+ nNum++;
+ }
+ }
+
+ return nNum;
+}
+
+void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
+{
+ vstats.clear();
+ LOCK(m_nodes_mutex);
+ vstats.reserve(m_nodes.size());
+ for (CNode* pnode : m_nodes) {
+ vstats.emplace_back();
+ pnode->CopyStats(vstats.back());
+ vstats.back().m_mapped_as = m_netgroupman.GetMappedAS(pnode->addr);
+ }
+}
+
+bool CConnman::DisconnectNode(const std::string& strNode)
+{
+ LOCK(m_nodes_mutex);
+ if (CNode* pnode = FindNode(strNode)) {
+ LogPrint(BCLog::NET, "disconnect by address%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId());
+ pnode->fDisconnect = true;
+ return true;
+ }
+ return false;
+}
+
+bool CConnman::DisconnectNode(const CSubNet& subnet)
+{
+ bool disconnected = false;
+ LOCK(m_nodes_mutex);
+ for (CNode* pnode : m_nodes) {
+ if (subnet.Match(pnode->addr)) {
+ LogPrint(BCLog::NET, "disconnect by subnet%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->GetId());
+ pnode->fDisconnect = true;
+ disconnected = true;
+ }
+ }
+ return disconnected;
+}
+
+bool CConnman::DisconnectNode(const CNetAddr& addr)
+{
+ return DisconnectNode(CSubNet(addr));
+}
+
+bool CConnman::DisconnectNode(NodeId id)
+{
+ LOCK(m_nodes_mutex);
+ for(CNode* pnode : m_nodes) {
+ if (id == pnode->GetId()) {
+ LogPrint(BCLog::NET, "disconnect by id peer=%d; disconnecting\n", pnode->GetId());
+ pnode->fDisconnect = true;
+ return true;
+ }
+ }
+ return false;
+}
+
+void CConnman::RecordBytesRecv(uint64_t bytes)
+{
+ nTotalBytesRecv += bytes;
+}
+
+void CConnman::RecordBytesSent(uint64_t bytes)
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+ LOCK(m_total_bytes_sent_mutex);
+
+ nTotalBytesSent += bytes;
+
+ const auto now = GetTime<std::chrono::seconds>();
+ if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
+ {
+ // timeframe expired, reset cycle
+ nMaxOutboundCycleStartTime = now;
+ nMaxOutboundTotalBytesSentInCycle = 0;
+ }
+
+ nMaxOutboundTotalBytesSentInCycle += bytes;
+}
+
+uint64_t CConnman::GetMaxOutboundTarget() const
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+ LOCK(m_total_bytes_sent_mutex);
+ return nMaxOutboundLimit;
+}
+
+std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
+{
+ return MAX_UPLOAD_TIMEFRAME;
+}
+
+std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+ LOCK(m_total_bytes_sent_mutex);
+ return GetMaxOutboundTimeLeftInCycle_();
+}
+
+std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
+{
+ AssertLockHeld(m_total_bytes_sent_mutex);
+
+ if (nMaxOutboundLimit == 0)
+ return 0s;
+
+ if (nMaxOutboundCycleStartTime.count() == 0)
+ return MAX_UPLOAD_TIMEFRAME;
+
+ const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
+ const auto now = GetTime<std::chrono::seconds>();
+ return (cycleEndTime < now) ? 0s : cycleEndTime - now;
+}
+
+bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+ LOCK(m_total_bytes_sent_mutex);
+ if (nMaxOutboundLimit == 0)
+ return false;
+
+ if (historicalBlockServingLimit)
+ {
+ // keep a large enough buffer to at least relay each block once
+ const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
+ const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
+ if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
+ return true;
+ }
+ else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
+ return true;
+
+ return false;
+}
+
+uint64_t CConnman::GetOutboundTargetBytesLeft() const
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+ LOCK(m_total_bytes_sent_mutex);
+ if (nMaxOutboundLimit == 0)
+ return 0;
+
+ return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
+}
+
+uint64_t CConnman::GetTotalBytesRecv() const
+{
+ return nTotalBytesRecv;
+}
+
+uint64_t CConnman::GetTotalBytesSent() const
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+ LOCK(m_total_bytes_sent_mutex);
+ return nTotalBytesSent;
+}
+
+ServiceFlags CConnman::GetLocalServices() const
+{
+ return nLocalServices;
+}
+
+unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; }
+
+CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, std::shared_ptr<Sock> sock, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress& addrBindIn, const std::string& addrNameIn, ConnectionType conn_type_in, bool inbound_onion)
+ : m_sock{sock},
+ m_connected{GetTime<std::chrono::seconds>()},
+ addr(addrIn),
+ addrBind(addrBindIn),
+ m_addr_name{addrNameIn.empty() ? addr.ToStringIPPort() : addrNameIn},
+ m_inbound_onion(inbound_onion),
+ nKeyedNetGroup(nKeyedNetGroupIn),
+ id(idIn),
+ nLocalHostNonce(nLocalHostNonceIn),
+ m_conn_type(conn_type_in),
+ nLocalServices(nLocalServicesIn)
+{
+ if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
+
+ for (const std::string &msg : getAllNetMessageTypes())
+ mapRecvBytesPerMsgType[msg] = 0;
+ mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
+
+ if (fLogIPs) {
+ LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
+ } else {
+ LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
+ }
+
+ m_deserializer = std::make_unique<V1TransportDeserializer>(V1TransportDeserializer(Params(), id, SER_NETWORK, INIT_PROTO_VERSION));
+ m_serializer = std::make_unique<V1TransportSerializer>(V1TransportSerializer());
+}
+
+bool CConnman::NodeFullyConnected(const CNode* pnode)
+{
+ return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
+}
+
+void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
+{
+ AssertLockNotHeld(m_total_bytes_sent_mutex);
+ size_t nMessageSize = msg.data.size();
+ LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
+ if (gArgs.GetBoolArg("-capturemessages", false)) {
+ CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
+ }
+
+ TRACE6(net, outbound_message,
+ pnode->GetId(),
+ pnode->m_addr_name.c_str(),
+ pnode->ConnectionTypeAsString().c_str(),
+ msg.m_type.c_str(),
+ msg.data.size(),
+ msg.data.data()
+ );
+
+ // make sure we use the appropriate network transport format
+ std::vector<unsigned char> serializedHeader;
+ pnode->m_serializer->prepareForTransport(msg, serializedHeader);
+ size_t nTotalSize = nMessageSize + serializedHeader.size();
+
+ size_t nBytesSent = 0;
+ {
+ LOCK(pnode->cs_vSend);
+ bool optimisticSend(pnode->vSendMsg.empty());
+
+ //log total amount of bytes per message type
+ pnode->mapSendBytesPerMsgType[msg.m_type] += nTotalSize;
+ pnode->nSendSize += nTotalSize;
+
+ if (pnode->nSendSize > nSendBufferMaxSize) pnode->fPauseSend = true;
+ pnode->vSendMsg.push_back(std::move(serializedHeader));
+ if (nMessageSize) pnode->vSendMsg.push_back(std::move(msg.data));
+
+ // If write queue empty, attempt "optimistic write"
+ if (optimisticSend) nBytesSent = SocketSendData(*pnode);
+ }
+ if (nBytesSent) RecordBytesSent(nBytesSent);
+}
+
+bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
+{
+ CNode* found = nullptr;
+ LOCK(m_nodes_mutex);
+ for (auto&& pnode : m_nodes) {
+ if(pnode->GetId() == id) {
+ found = pnode;
+ break;
+ }
+ }
+ return found != nullptr && NodeFullyConnected(found) && func(found);
+}
+
+CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
+{
+ return CSipHasher(nSeed0, nSeed1).Write(id);
+}
+
+uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& address) const
+{
+ std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
+
+ return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup.data(), vchNetGroup.size()).Finalize();
+}
+
+void CaptureMessageToFile(const CAddress& addr,
+ const std::string& msg_type,
+ Span<const unsigned char> data,
+ bool is_incoming)
+{
+ // Note: This function captures the message at the time of processing,
+ // not at socket receive/send time.
+ // This ensures that the messages are always in order from an application
+ // layer (processing) perspective.
+ auto now = GetTime<std::chrono::microseconds>();
+
+ // Windows folder names cannot include a colon
+ std::string clean_addr = addr.ToString();
+ std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
+
+ fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
+ fs::create_directories(base_path);
+
+ fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
+ CAutoFile f(fsbridge::fopen(path, "ab"), SER_DISK, CLIENT_VERSION);
+
+ ser_writedata64(f, now.count());
+ f.write(MakeByteSpan(msg_type));
+ for (auto i = msg_type.length(); i < CMessageHeader::COMMAND_SIZE; ++i) {
+ f << uint8_t{'\0'};
+ }
+ uint32_t size = data.size();
+ ser_writedata32(f, size);
+ f.write(AsBytes(data));
+}
+
+std::function<void(const CAddress& addr,
+ const std::string& msg_type,
+ Span<const unsigned char> data,
+ bool is_incoming)>
+ CaptureMessage = CaptureMessageToFile;