diff options
Diffstat (limited to 'src/modules/schnorr/schnorr_impl.h')
-rw-r--r-- | src/modules/schnorr/schnorr_impl.h | 207 |
1 files changed, 207 insertions, 0 deletions
diff --git a/src/modules/schnorr/schnorr_impl.h b/src/modules/schnorr/schnorr_impl.h new file mode 100644 index 0000000000..e13ab6db7c --- /dev/null +++ b/src/modules/schnorr/schnorr_impl.h @@ -0,0 +1,207 @@ +/*********************************************************************** + * Copyright (c) 2014-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php. * + ***********************************************************************/ + +#ifndef _SECP256K1_SCHNORR_IMPL_H_ +#define _SECP256K1_SCHNORR_IMPL_H_ + +#include <string.h> + +#include "schnorr.h" +#include "num.h" +#include "field.h" +#include "group.h" +#include "ecmult.h" +#include "ecmult_gen.h" + +/** + * Custom Schnorr-based signature scheme. They support multiparty signing, public key + * recovery and batch validation. + * + * Rationale for verifying R's y coordinate: + * In order to support batch validation and public key recovery, the full R point must + * be known to verifiers, rather than just its x coordinate. In order to not risk + * being more strict in batch validation than normal validation, validators must be + * required to reject signatures with incorrect y coordinate. This is only possible + * by including a (relatively slow) field inverse, or a field square root. However, + * batch validation offers potentially much higher benefits than this cost. + * + * Rationale for having an implicit y coordinate oddness: + * If we commit to having the full R point known to verifiers, there are two mechanism. + * Either include its oddness in the signature, or give it an implicit fixed value. + * As the R y coordinate can be flipped by a simple negation of the nonce, we choose the + * latter, as it comes with nearly zero impact on signing or validation performance, and + * saves a byte in the signature. + * + * Signing: + * Inputs: 32-byte message m, 32-byte scalar key x (!=0), 32-byte scalar nonce k (!=0) + * + * Compute point R = k * G. Reject nonce if R's y coordinate is odd (or negate nonce). + * Compute 32-byte r, the serialization of R's x coordinate. + * Compute scalar h = Hash(r || m). Reject nonce if h == 0 or h >= order. + * Compute scalar s = k - h * x. + * The signature is (r, s). + * + * + * Verification: + * Inputs: 32-byte message m, public key point Q, signature: (32-byte r, scalar s) + * + * Signature is invalid if s >= order. + * Signature is invalid if r >= p. + * Compute scalar h = Hash(r || m). Signature is invalid if h == 0 or h >= order. + * Option 1 (faster for single verification): + * Compute point R = h * Q + s * G. Signature is invalid if R is infinity or R's y coordinate is odd. + * Signature is valid if the serialization of R's x coordinate equals r. + * Option 2 (allows batch validation and pubkey recovery): + * Decompress x coordinate r into point R, with odd y coordinate. Fail if R is not on the curve. + * Signature is valid if R + h * Q + s * G == 0. + */ + +static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32) { + secp256k1_gej Rj; + secp256k1_ge Ra; + unsigned char h32[32]; + secp256k1_scalar h, s; + int overflow; + secp256k1_scalar n; + + if (secp256k1_scalar_is_zero(key) || secp256k1_scalar_is_zero(nonce)) { + return 0; + } + n = *nonce; + + secp256k1_ecmult_gen(ctx, &Rj, &n); + if (pubnonce != NULL) { + secp256k1_gej_add_ge(&Rj, &Rj, pubnonce); + } + secp256k1_ge_set_gej(&Ra, &Rj); + secp256k1_fe_normalize(&Ra.y); + if (secp256k1_fe_is_odd(&Ra.y)) { + /* R's y coordinate is odd, which is not allowed (see rationale above). + Force it to be even by negating the nonce. Note that this even works + for multiparty signing, as the R point is known to all participants, + which can all decide to flip the sign in unison, resulting in the + overall R point to be negated too. */ + secp256k1_scalar_negate(&n, &n); + } + secp256k1_fe_normalize(&Ra.x); + secp256k1_fe_get_b32(sig64, &Ra.x); + hash(h32, sig64, msg32); + overflow = 0; + secp256k1_scalar_set_b32(&h, h32, &overflow); + if (overflow || secp256k1_scalar_is_zero(&h)) { + secp256k1_scalar_clear(&n); + return 0; + } + secp256k1_scalar_mul(&s, &h, key); + secp256k1_scalar_negate(&s, &s); + secp256k1_scalar_add(&s, &s, &n); + secp256k1_scalar_clear(&n); + secp256k1_scalar_get_b32(sig64 + 32, &s); + return 1; +} + +static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) { + secp256k1_gej Qj, Rj; + secp256k1_ge Ra; + secp256k1_fe Rx; + secp256k1_scalar h, s; + unsigned char hh[32]; + int overflow; + + if (secp256k1_ge_is_infinity(pubkey)) { + return 0; + } + hash(hh, sig64, msg32); + overflow = 0; + secp256k1_scalar_set_b32(&h, hh, &overflow); + if (overflow || secp256k1_scalar_is_zero(&h)) { + return 0; + } + overflow = 0; + secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow); + if (overflow) { + return 0; + } + if (!secp256k1_fe_set_b32(&Rx, sig64)) { + return 0; + } + secp256k1_gej_set_ge(&Qj, pubkey); + secp256k1_ecmult(ctx, &Rj, &Qj, &h, &s); + if (secp256k1_gej_is_infinity(&Rj)) { + return 0; + } + secp256k1_ge_set_gej_var(&Ra, &Rj); + secp256k1_fe_normalize_var(&Ra.y); + if (secp256k1_fe_is_odd(&Ra.y)) { + return 0; + } + return secp256k1_fe_equal_var(&Rx, &Ra.x); +} + +static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) { + secp256k1_gej Qj, Rj; + secp256k1_ge Ra; + secp256k1_fe Rx; + secp256k1_scalar h, s; + unsigned char hh[32]; + int overflow; + + hash(hh, sig64, msg32); + overflow = 0; + secp256k1_scalar_set_b32(&h, hh, &overflow); + if (overflow || secp256k1_scalar_is_zero(&h)) { + return 0; + } + overflow = 0; + secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow); + if (overflow) { + return 0; + } + if (!secp256k1_fe_set_b32(&Rx, sig64)) { + return 0; + } + if (!secp256k1_ge_set_xo_var(&Ra, &Rx, 0)) { + return 0; + } + secp256k1_gej_set_ge(&Rj, &Ra); + secp256k1_scalar_inverse_var(&h, &h); + secp256k1_scalar_negate(&s, &s); + secp256k1_scalar_mul(&s, &s, &h); + secp256k1_ecmult(ctx, &Qj, &Rj, &h, &s); + if (secp256k1_gej_is_infinity(&Qj)) { + return 0; + } + secp256k1_ge_set_gej(pubkey, &Qj); + return 1; +} + +static int secp256k1_schnorr_sig_combine(unsigned char *sig64, size_t n, const unsigned char * const *sig64ins) { + secp256k1_scalar s = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); + size_t i; + for (i = 0; i < n; i++) { + secp256k1_scalar si; + int overflow; + secp256k1_scalar_set_b32(&si, sig64ins[i] + 32, &overflow); + if (overflow) { + return -1; + } + if (i) { + if (memcmp(sig64ins[i - 1], sig64ins[i], 32) != 0) { + return -1; + } + } + secp256k1_scalar_add(&s, &s, &si); + } + if (secp256k1_scalar_is_zero(&s)) { + return 0; + } + memcpy(sig64, sig64ins[0], 32); + secp256k1_scalar_get_b32(sig64 + 32, &s); + secp256k1_scalar_clear(&s); + return 1; +} + +#endif |