aboutsummaryrefslogtreecommitdiff
path: root/src/minisketch/tests
diff options
context:
space:
mode:
Diffstat (limited to 'src/minisketch/tests')
-rwxr-xr-xsrc/minisketch/tests/pyminisketch.py507
1 files changed, 507 insertions, 0 deletions
diff --git a/src/minisketch/tests/pyminisketch.py b/src/minisketch/tests/pyminisketch.py
new file mode 100755
index 0000000000..7a9ea9c1f1
--- /dev/null
+++ b/src/minisketch/tests/pyminisketch.py
@@ -0,0 +1,507 @@
+#!/usr/bin/env python3
+# Copyright (c) 2020 Pieter Wuille
+# Distributed under the MIT software license, see the accompanying
+# file LICENSE or http://www.opensource.org/licenses/mit-license.php.
+
+"""Native Python (slow) reimplementation of libminisketch' algorithms."""
+
+import random
+import unittest
+
+# Irreducible polynomials over GF(2) to use (represented as integers).
+#
+# Most fields can be defined by multiple such polynomials. Minisketch uses the one with the minimal
+# number of nonzero coefficients, and tie-breaking by picking the lexicographically first among
+# those.
+#
+# All polynomials for degrees 2 through 64 (inclusive) are given.
+GF2_MODULI = [
+ None, None,
+ 2**2 + 2**1 + 1,
+ 2**3 + 2**1 + 1,
+ 2**4 + 2**1 + 1,
+ 2**5 + 2**2 + 1,
+ 2**6 + 2**1 + 1,
+ 2**7 + 2**1 + 1,
+ 2**8 + 2**4 + 2**3 + 2**1 + 1,
+ 2**9 + 2**1 + 1,
+ 2**10 + 2**3 + 1,
+ 2**11 + 2**2 + 1,
+ 2**12 + 2**3 + 1,
+ 2**13 + 2**4 + 2**3 + 2**1 + 1,
+ 2**14 + 2**5 + 1,
+ 2**15 + 2**1 + 1,
+ 2**16 + 2**5 + 2**3 + 2**1 + 1,
+ 2**17 + 2**3 + 1,
+ 2**18 + 2**3 + 1,
+ 2**19 + 2**5 + 2**2 + 2**1 + 1,
+ 2**20 + 2**3 + 1,
+ 2**21 + 2**2 + 1,
+ 2**22 + 2**1 + 1,
+ 2**23 + 2**5 + 1,
+ 2**24 + 2**4 + 2**3 + 2**1 + 1,
+ 2**25 + 2**3 + 1,
+ 2**26 + 2**4 + 2**3 + 2**1 + 1,
+ 2**27 + 2**5 + 2**2 + 2**1 + 1,
+ 2**28 + 2**1 + 1,
+ 2**29 + 2**2 + 1,
+ 2**30 + 2**1 + 1,
+ 2**31 + 2**3 + 1,
+ 2**32 + 2**7 + 2**3 + 2**2 + 1,
+ 2**33 + 2**10 + 1,
+ 2**34 + 2**7 + 1,
+ 2**35 + 2**2 + 1,
+ 2**36 + 2**9 + 1,
+ 2**37 + 2**6 + 2**4 + 2**1 + 1,
+ 2**38 + 2**6 + 2**5 + 2**1 + 1,
+ 2**39 + 2**4 + 1,
+ 2**40 + 2**5 + 2**4 + 2**3 + 1,
+ 2**41 + 2**3 + 1,
+ 2**42 + 2**7 + 1,
+ 2**43 + 2**6 + 2**4 + 2**3 + 1,
+ 2**44 + 2**5 + 1,
+ 2**45 + 2**4 + 2**3 + 2**1 + 1,
+ 2**46 + 2**1 + 1,
+ 2**47 + 2**5 + 1,
+ 2**48 + 2**5 + 2**3 + 2**2 + 1,
+ 2**49 + 2**9 + 1,
+ 2**50 + 2**4 + 2**3 + 2**2 + 1,
+ 2**51 + 2**6 + 2**3 + 2**1 + 1,
+ 2**52 + 2**3 + 1,
+ 2**53 + 2**6 + 2**2 + 2**1 + 1,
+ 2**54 + 2**9 + 1,
+ 2**55 + 2**7 + 1,
+ 2**56 + 2**7 + 2**4 + 2**2 + 1,
+ 2**57 + 2**4 + 1,
+ 2**58 + 2**19 + 1,
+ 2**59 + 2**7 + 2**4 + 2**2 + 1,
+ 2**60 + 2**1 + 1,
+ 2**61 + 2**5 + 2**2 + 2**1 + 1,
+ 2**62 + 2**29 + 1,
+ 2**63 + 2**1 + 1,
+ 2**64 + 2**4 + 2**3 + 2**1 + 1
+]
+
+class GF2Ops:
+ """Class to perform GF(2^field_size) operations on elements represented as integers.
+
+ Given that elements are represented as integers, addition is simply xor, and not
+ exposed here.
+ """
+
+ def __init__(self, field_size):
+ """Construct a GF2Ops object for the specified field size."""
+ self.field_size = field_size
+ self._modulus = GF2_MODULI[field_size]
+ assert self._modulus is not None
+
+ def mul2(self, x):
+ """Multiply x by 2 in GF(2^field_size)."""
+ x <<= 1
+ if x >> self.field_size:
+ x ^= self._modulus
+ return x
+
+ def mul(self, x, y):
+ """Multiply x by y in GF(2^field_size)."""
+ ret = 0
+ while y:
+ if y & 1:
+ ret ^= x
+ y >>= 1
+ x = self.mul2(x)
+ return ret
+
+ def sqr(self, x):
+ """Square x in GF(2^field_size)."""
+ return self.mul(x, x)
+
+ def inv(self, x):
+ """Compute the inverse of x in GF(2^field_size)."""
+ assert x != 0
+ # Use the extended polynomial Euclidean GCD algorithm on (modulus, x), over GF(2).
+ # See https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor.
+ t1, t2 = 0, 1
+ r1, r2 = self._modulus, x
+ r1l, r2l = self.field_size + 1, r2.bit_length()
+ while r2:
+ q = r1l - r2l
+ r1 ^= r2 << q
+ t1 ^= t2 << q
+ r1l = r1.bit_length()
+ if r1 < r2:
+ t1, t2 = t2, t1
+ r1, r2 = r2, r1
+ r1l, r2l = r2l, r1l
+ assert r1 == 1
+ return t1
+
+class TestGF2Ops(unittest.TestCase):
+ """Test class for basic arithmetic properties of GF2Ops."""
+
+ def field_size_test(self, field_size):
+ """Test operations for given field_size."""
+
+ gf = GF2Ops(field_size)
+ for i in range(100):
+ x = random.randrange(1 << field_size)
+ y = random.randrange(1 << field_size)
+ x2 = gf.mul2(x)
+ xy = gf.mul(x, y)
+ self.assertEqual(x2, gf.mul(x, 2)) # mul2(x) == x*2
+ self.assertEqual(x2, gf.mul(2, x)) # mul2(x) == 2*x
+ self.assertEqual(xy == 0, x == 0 or y == 0)
+ self.assertEqual(xy == x, y == 1 or x == 0)
+ self.assertEqual(xy == y, x == 1 or y == 0)
+ self.assertEqual(xy, gf.mul(y, x)) # x*y == y*x
+ if i < 10:
+ xp = x
+ for _ in range(field_size):
+ xp = gf.sqr(xp)
+ self.assertEqual(xp, x) # x^(2^field_size) == x
+ if y != 0:
+ yi = gf.inv(y)
+ self.assertEqual(y == yi, y == 1) # y==1/x iff y==1
+ self.assertEqual(gf.mul(y, yi), 1) # y*(1/y) == 1
+ yii = gf.inv(yi)
+ self.assertEqual(y, yii) # 1/(1/y) == y
+ if x != 0:
+ xi = gf.inv(x)
+ xyi = gf.inv(xy)
+ self.assertEqual(xyi, gf.mul(xi, yi)) # (1/x)*(1/y) == 1/(x*y)
+
+ def test(self):
+ """Run tests."""
+ for field_size in range(2, 65):
+ self.field_size_test(field_size)
+
+# The operations below operate on polynomials over GF(2^field_size), represented as lists of
+# integers:
+#
+# [a, b, c, ...] = a + b*x + c*x^2 + ...
+#
+# As an invariant, there are never any trailing zeroes in the list representation.
+#
+# Examples:
+# * [] = 0
+# * [3] = 3
+# * [0, 1] = x
+# * [2, 0, 5] = 5*x^2 + 2
+
+def poly_monic(poly, gf):
+ """Return a monic version of the polynomial poly."""
+ # Multiply every coefficient with the inverse of the top coefficient.
+ inv = gf.inv(poly[-1])
+ return [gf.mul(inv, v) for v in poly]
+
+def poly_divmod(poly, mod, gf):
+ """Return the polynomial (quotient, remainder) of poly divided by mod."""
+ assert len(mod) > 0 and mod[-1] == 1 # Require monic mod.
+ if len(poly) < len(mod):
+ return ([], poly)
+ val = list(poly)
+ div = [0 for _ in range(len(val) - len(mod) + 1)]
+ while len(val) >= len(mod):
+ term = val[-1]
+ div[len(val) - len(mod)] = term
+ # If the highest coefficient in val is nonzero, subtract a multiple of mod from it.
+ val.pop()
+ if term != 0:
+ for x in range(len(mod) - 1):
+ val[1 + x - len(mod)] ^= gf.mul(term, mod[x])
+ # Prune trailing zero coefficients.
+ while len(val) > 0 and val[-1] == 0:
+ val.pop()
+ return div, val
+
+def poly_gcd(a, b, gf):
+ """Return the polynomial GCD of a and b."""
+ if len(a) < len(b):
+ a, b = b, a
+ # Use Euclid's algorithm to find the GCD of a and b.
+ # see https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor#Euclid's_algorithm.
+ while len(b) > 0:
+ b = poly_monic(b, gf)
+ (_, b), a = poly_divmod(a, b, gf), b
+ return a
+
+def poly_sqr(poly, gf):
+ """Return the square of polynomial poly."""
+ if len(poly) == 0:
+ return []
+ # In characteristic-2 fields, thanks to Frobenius' endomorphism ((a + b)^2 = a^2 + b^2),
+ # squaring a polynomial is easy: square all the coefficients and interleave with zeroes.
+ # E.g., (3 + 5*x + 17*x^2)^2 = 3^2 + (5*x)^2 + (17*x^2)^2.
+ # See https://en.wikipedia.org/wiki/Frobenius_endomorphism.
+ return [0 if i & 1 else gf.sqr(poly[i // 2]) for i in range(2 * len(poly) - 1)]
+
+def poly_tracemod(poly, param, gf):
+ """Compute y + y^2 + y^4 + ... + y^(2^(field_size-1)) mod poly, where y = param*x."""
+ out = [0, param]
+ for _ in range(gf.field_size - 1):
+ # In each loop iteration i, we start with out = y + y^2 + ... + y^(2^i). By squaring that we
+ # transform it into out = y^2 + y^4 + ... + y^(2^(i+1)).
+ out = poly_sqr(out, gf)
+ # Thus, we just need to add y again to it to get out = y + ... + y^(2^(i+1)).
+ while len(out) < 2:
+ out.append(0)
+ out[1] = param
+ # Finally take a modulus to keep the intermediary polynomials small.
+ _, out = poly_divmod(out, poly, gf)
+ return out
+
+def poly_frobeniusmod(poly, gf):
+ """Compute x^(2^field_size) mod poly."""
+ out = [0, 1]
+ for _ in range(gf.field_size):
+ _, out = poly_divmod(poly_sqr(out, gf), poly, gf)
+ return out
+
+def poly_find_roots(poly, gf):
+ """Find the roots of poly if fully factorizable with unique roots, [] otherwise."""
+ assert len(poly) > 0
+ # If the polynomial is constant (and nonzero), it has no roots.
+ if len(poly) == 1:
+ return []
+ # Make the polynomial monic (which doesn't change its roots).
+ poly = poly_monic(poly, gf)
+ # If the polynomial is of the form x+a, return a.
+ if len(poly) == 2:
+ return [poly[0]]
+ # Otherwise, first test that poly can be completely factored into unique roots. The polynomial
+ # x^(2^fieldsize)-x has every field element once as root. Thus we want to know that that is a
+ # multiple of poly. Compute x^(field_size) mod poly, which needs to equal x if that is the case
+ # (unless poly has degree <= 1, but that case is handled above).
+ if poly_frobeniusmod(poly, gf) != [0, 1]:
+ return []
+
+ def rec_split(poly, randv):
+ """Recursively split poly using the Berlekamp trace algorithm."""
+ # See https://hal.archives-ouvertes.fr/hal-00626997/document.
+ assert len(poly) > 1 and poly[-1] == 1 # Require a monic poly.
+ # If poly is of the form x+a, its root is a.
+ if len(poly) == 2:
+ return [poly[0]]
+ # Try consecutive randomization factors randv, until one is found that factors poly.
+ while True:
+ # Compute the trace of (randv*x) mod poly. This is a polynomial that maps half of the
+ # domain to 0, and the other half to 1. Which half that is is controlled by randv.
+ # By taking it modulo poly, we only add a multiple of poly. Thus the result has at least
+ # the shared roots of the trace polynomial and poly still, but may have others.
+ trace = poly_tracemod(poly, randv, gf)
+ # Using the set {2^i*a for i=0..fieldsize-1} gives optimally independent randv values
+ # (no more than fieldsize are ever needed).
+ randv = gf.mul2(randv)
+ # Now take the GCD of this trace polynomial with poly. The result is a polynomial
+ # that only has the shared roots of the trace polynomial and poly as roots.
+ gcd = poly_gcd(trace, poly, gf)
+ # If the result has a degree higher than 1, and lower than that of poly, we found a
+ # useful factorization.
+ if len(gcd) != len(poly) and len(gcd) > 1:
+ break
+ # Otherwise, continue with another randv.
+ # Find the actual factors: the monic version of the GCD above, and poly divided by it.
+ factor1 = poly_monic(gcd, gf)
+ factor2, _ = poly_divmod(poly, gcd, gf)
+ # Recurse.
+ return rec_split(factor1, randv) + rec_split(factor2, randv)
+
+ # Invoke the recursive splitting with a random initial factor, and sort the results.
+ return sorted(rec_split(poly, random.randrange(1, 1 << gf.field_size)))
+
+class TestPolyFindRoots(unittest.TestCase):
+ """Test class for poly_find_roots."""
+
+ def field_size_test(self, field_size):
+ """Run tests for given field_size."""
+ gf = GF2Ops(field_size)
+ for test_size in [0, 1, 2, 3, 10]:
+ roots = [random.randrange(1 << field_size) for _ in range(test_size)]
+ roots_set = set(roots)
+ # Construct a polynomial with all elements of roots as roots (with multiplicity).
+ poly = [1]
+ for root in roots:
+ new_poly = [0] + poly
+ for n, c in enumerate(poly):
+ new_poly[n] ^= gf.mul(c, root)
+ poly = new_poly
+ # Invoke the root finding algorithm.
+ found_roots = poly_find_roots(poly, gf)
+ # The result must match the input, unless any roots were repeated.
+ if len(roots) == len(roots_set):
+ self.assertEqual(found_roots, sorted(roots))
+ else:
+ self.assertEqual(found_roots, [])
+
+ def test(self):
+ """Run tests."""
+ for field_size in range(2, 65):
+ self.field_size_test(field_size)
+
+def berlekamp_massey(syndromes, gf):
+ """Implement the Berlekamp-Massey algorithm.
+
+ Takes as input a sequence of GF(2^field_size) elements, and returns the shortest LSFR
+ that generates it, represented as a polynomial.
+ """
+ # See https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm.
+ current = [1]
+ prev = [1]
+ b_inv = 1
+ for n, discrepancy in enumerate(syndromes):
+ # Compute discrepancy
+ for i in range(1, len(current)):
+ discrepancy ^= gf.mul(syndromes[n - i], current[i])
+
+ # Correct if discrepancy is nonzero.
+ if discrepancy:
+ x = n + 1 - (len(current) - 1) - (len(prev) - 1)
+ if 2 * (len(current) - 1) <= n:
+ tmp = list(current)
+ current.extend(0 for _ in range(len(prev) + x - len(current)))
+ mul = gf.mul(discrepancy, b_inv)
+ for i, v in enumerate(prev):
+ current[i + x] ^= gf.mul(mul, v)
+ prev = tmp
+ b_inv = gf.inv(discrepancy)
+ else:
+ mul = gf.mul(discrepancy, b_inv)
+ for i, v in enumerate(prev):
+ current[i + x] ^= gf.mul(mul, v)
+ return current
+
+class Minisketch:
+ """A Minisketch sketch.
+
+ This represents a sketch of a certain capacity, with elements of a certain bit size.
+ """
+
+ def __init__(self, field_size, capacity):
+ """Initialize an empty sketch with the specified field_size size and capacity."""
+ self.field_size = field_size
+ self.capacity = capacity
+ self.odd_syndromes = [0] * capacity
+ self.gf = GF2Ops(field_size)
+
+ def add(self, element):
+ """Add an element to this sketch. 1 <= element < 2**field_size."""
+ sqr = self.gf.sqr(element)
+ for pos in range(self.capacity):
+ self.odd_syndromes[pos] ^= element
+ element = self.gf.mul(sqr, element)
+
+ def serialized_size(self):
+ """Compute how many bytes a serialization of this sketch will be in size."""
+ return (self.capacity * self.field_size + 7) // 8
+
+ def serialize(self):
+ """Serialize this sketch to bytes."""
+ val = 0
+ for i in range(self.capacity):
+ val |= self.odd_syndromes[i] << (self.field_size * i)
+ return val.to_bytes(self.serialized_size(), 'little')
+
+ def deserialize(self, byte_data):
+ """Deserialize a byte array into this sketch, overwriting its contents."""
+ assert len(byte_data) == self.serialized_size()
+ val = int.from_bytes(byte_data, 'little')
+ for i in range(self.capacity):
+ self.odd_syndromes[i] = (val >> (self.field_size * i)) & ((1 << self.field_size) - 1)
+
+ def clone(self):
+ """Return a clone of this sketch."""
+ ret = Minisketch(self.field_size, self.capacity)
+ ret.odd_syndromes = list(self.odd_syndromes)
+ ret.gf = self.gf
+ return ret
+
+ def merge(self, other):
+ """Merge a sketch with another sketch. Corresponds to XOR'ing their serializations."""
+ assert self.capacity == other.capacity
+ assert self.field_size == other.field_size
+ for i in range(self.capacity):
+ self.odd_syndromes[i] ^= other.odd_syndromes[i]
+
+ def decode(self, max_count=None):
+ """Decode the contents of this sketch.
+
+ Returns either a list of elements or None if undecodable.
+ """
+ # We know the odd syndromes s1=x+y+..., s3=x^3+y^3+..., s5=..., and reconstruct the even
+ # syndromes from this:
+ # * s2 = x^2+y^2+.... = (x+y+...)^2 = s1^2
+ # * s4 = x^4+y^4+.... = (x^2+y^2+...)^2 = s2^2
+ # * s6 = x^6+y^6+.... = (x^3+y^3+...)^2 = s3^2
+ all_syndromes = [0 for _ in range(2 * len(self.odd_syndromes))]
+ for i in range(len(self.odd_syndromes)):
+ all_syndromes[i * 2] = self.odd_syndromes[i]
+ all_syndromes[i * 2 + 1] = self.gf.sqr(all_syndromes[i])
+ # Given the syndromes, find the polynomial that generates them.
+ poly = berlekamp_massey(all_syndromes, self.gf)
+ # Deal with failure and trivial cases.
+ if len(poly) == 0:
+ return None
+ if len(poly) == 1:
+ return []
+ if max_count is not None and len(poly) > 1 + max_count:
+ return None
+ # If the polynomial can be factored into (1-m1*x)*(1-m2*x)*...*(1-mn*x), then {m1,m2,...,mn}
+ # is our set. As each factor (1-m*x) has 1/m as root, we're really just looking for the
+ # inverses of the roots. We find these by reversing the order of the coefficients, and
+ # finding the roots.
+ roots = poly_find_roots(list(reversed(poly)), self.gf)
+ if len(roots) == 0:
+ return None
+ return roots
+
+class TestMinisketch(unittest.TestCase):
+ """Test class for Minisketch."""
+
+ @classmethod
+ def construct_data(cls, field_size, num_a_only, num_b_only, num_both):
+ """Construct two random lists of elements in [1..2**field_size-1].
+
+ Each list will have unique elements that don't appear in the other (num_a_only in the first
+ and num_b_only in the second), and num_both elements will appear in both."""
+ sample = []
+ # Simulate random.sample here (which doesn't work with ranges over 2**63).
+ for _ in range(num_a_only + num_b_only + num_both):
+ while True:
+ r = random.randrange(1, 1 << field_size)
+ if r not in sample:
+ sample.append(r)
+ break
+ full_a = sample[:num_a_only + num_both]
+ full_b = sample[num_a_only:]
+ random.shuffle(full_a)
+ random.shuffle(full_b)
+ return full_a, full_b
+
+ def field_size_capacity_test(self, field_size, capacity):
+ """Test Minisketch methods for a specific field and capacity."""
+ used_capacity = random.randrange(capacity + 1)
+ num_a = random.randrange(used_capacity + 1)
+ num_both = random.randrange(min(2 * capacity, (1 << field_size) - 1 - used_capacity) + 1)
+ full_a, full_b = self.construct_data(field_size, num_a, used_capacity - num_a, num_both)
+ sketch_a = Minisketch(field_size, capacity)
+ sketch_b = Minisketch(field_size, capacity)
+ for v in full_a:
+ sketch_a.add(v)
+ for v in full_b:
+ sketch_b.add(v)
+ sketch_combined = sketch_a.clone()
+ sketch_b_ser = sketch_b.serialize()
+ sketch_b_received = Minisketch(field_size, capacity)
+ sketch_b_received.deserialize(sketch_b_ser)
+ sketch_combined.merge(sketch_b_received)
+ decode = sketch_combined.decode()
+ self.assertEqual(decode, sorted(set(full_a) ^ set(full_b)))
+
+ def test(self):
+ """Run tests."""
+ for field_size in range(2, 65):
+ for capacity in [0, 1, 2, 5, 10, field_size]:
+ self.field_size_capacity_test(field_size, min(capacity, (1 << field_size) - 1))
+
+if __name__ == '__main__':
+ unittest.main()