aboutsummaryrefslogtreecommitdiff
path: root/src/key.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/key.cpp')
-rw-r--r--src/key.cpp393
1 files changed, 393 insertions, 0 deletions
diff --git a/src/key.cpp b/src/key.cpp
new file mode 100644
index 0000000000..7bef3d529b
--- /dev/null
+++ b/src/key.cpp
@@ -0,0 +1,393 @@
+// Copyright (c) 2009-2020 The Bitcoin Core developers
+// Copyright (c) 2017 The Zcash developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#include <key.h>
+
+#include <crypto/common.h>
+#include <crypto/hmac_sha512.h>
+#include <hash.h>
+#include <random.h>
+
+#include <secp256k1.h>
+#include <secp256k1_extrakeys.h>
+#include <secp256k1_recovery.h>
+#include <secp256k1_schnorrsig.h>
+
+static secp256k1_context* secp256k1_context_sign = nullptr;
+
+/** These functions are taken from the libsecp256k1 distribution and are very ugly. */
+
+/**
+ * This parses a format loosely based on a DER encoding of the ECPrivateKey type from
+ * section C.4 of SEC 1 <https://www.secg.org/sec1-v2.pdf>, with the following caveats:
+ *
+ * * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not
+ * required to be encoded as one octet if it is less than 256, as DER would require.
+ * * The octet-length of the SEQUENCE must not be greater than the remaining
+ * length of the key encoding, but need not match it (i.e. the encoding may contain
+ * junk after the encoded SEQUENCE).
+ * * The privateKey OCTET STRING is zero-filled on the left to 32 octets.
+ * * Anything after the encoding of the privateKey OCTET STRING is ignored, whether
+ * or not it is validly encoded DER.
+ *
+ * out32 must point to an output buffer of length at least 32 bytes.
+ */
+int ec_seckey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen) {
+ const unsigned char *end = seckey + seckeylen;
+ memset(out32, 0, 32);
+ /* sequence header */
+ if (end - seckey < 1 || *seckey != 0x30u) {
+ return 0;
+ }
+ seckey++;
+ /* sequence length constructor */
+ if (end - seckey < 1 || !(*seckey & 0x80u)) {
+ return 0;
+ }
+ ptrdiff_t lenb = *seckey & ~0x80u; seckey++;
+ if (lenb < 1 || lenb > 2) {
+ return 0;
+ }
+ if (end - seckey < lenb) {
+ return 0;
+ }
+ /* sequence length */
+ ptrdiff_t len = seckey[lenb-1] | (lenb > 1 ? seckey[lenb-2] << 8 : 0u);
+ seckey += lenb;
+ if (end - seckey < len) {
+ return 0;
+ }
+ /* sequence element 0: version number (=1) */
+ if (end - seckey < 3 || seckey[0] != 0x02u || seckey[1] != 0x01u || seckey[2] != 0x01u) {
+ return 0;
+ }
+ seckey += 3;
+ /* sequence element 1: octet string, up to 32 bytes */
+ if (end - seckey < 2 || seckey[0] != 0x04u) {
+ return 0;
+ }
+ ptrdiff_t oslen = seckey[1];
+ seckey += 2;
+ if (oslen > 32 || end - seckey < oslen) {
+ return 0;
+ }
+ memcpy(out32 + (32 - oslen), seckey, oslen);
+ if (!secp256k1_ec_seckey_verify(ctx, out32)) {
+ memset(out32, 0, 32);
+ return 0;
+ }
+ return 1;
+}
+
+/**
+ * This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1
+ * <https://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are
+ * included.
+ *
+ * seckey must point to an output buffer of length at least CKey::SIZE bytes.
+ * seckeylen must initially be set to the size of the seckey buffer. Upon return it
+ * will be set to the number of bytes used in the buffer.
+ * key32 must point to a 32-byte raw private key.
+ */
+int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed) {
+ assert(*seckeylen >= CKey::SIZE);
+ secp256k1_pubkey pubkey;
+ size_t pubkeylen = 0;
+ if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
+ *seckeylen = 0;
+ return 0;
+ }
+ if (compressed) {
+ static const unsigned char begin[] = {
+ 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
+ };
+ static const unsigned char middle[] = {
+ 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
+ 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
+ 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
+ 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
+ 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
+ 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
+ };
+ unsigned char *ptr = seckey;
+ memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
+ memcpy(ptr, key32, 32); ptr += 32;
+ memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
+ pubkeylen = CPubKey::COMPRESSED_SIZE;
+ secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
+ ptr += pubkeylen;
+ *seckeylen = ptr - seckey;
+ assert(*seckeylen == CKey::COMPRESSED_SIZE);
+ } else {
+ static const unsigned char begin[] = {
+ 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
+ };
+ static const unsigned char middle[] = {
+ 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
+ 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
+ 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
+ 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
+ 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
+ 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
+ 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
+ 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
+ };
+ unsigned char *ptr = seckey;
+ memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
+ memcpy(ptr, key32, 32); ptr += 32;
+ memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
+ pubkeylen = CPubKey::SIZE;
+ secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
+ ptr += pubkeylen;
+ *seckeylen = ptr - seckey;
+ assert(*seckeylen == CKey::SIZE);
+ }
+ return 1;
+}
+
+bool CKey::Check(const unsigned char *vch) {
+ return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);
+}
+
+void CKey::MakeNewKey(bool fCompressedIn) {
+ do {
+ GetStrongRandBytes(keydata.data(), keydata.size());
+ } while (!Check(keydata.data()));
+ fValid = true;
+ fCompressed = fCompressedIn;
+}
+
+bool CKey::Negate()
+{
+ assert(fValid);
+ return secp256k1_ec_seckey_negate(secp256k1_context_sign, keydata.data());
+}
+
+CPrivKey CKey::GetPrivKey() const {
+ assert(fValid);
+ CPrivKey seckey;
+ int ret;
+ size_t seckeylen;
+ seckey.resize(SIZE);
+ seckeylen = SIZE;
+ ret = ec_seckey_export_der(secp256k1_context_sign, seckey.data(), &seckeylen, begin(), fCompressed);
+ assert(ret);
+ seckey.resize(seckeylen);
+ return seckey;
+}
+
+CPubKey CKey::GetPubKey() const {
+ assert(fValid);
+ secp256k1_pubkey pubkey;
+ size_t clen = CPubKey::SIZE;
+ CPubKey result;
+ int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin());
+ assert(ret);
+ secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
+ assert(result.size() == clen);
+ assert(result.IsValid());
+ return result;
+}
+
+// Check that the sig has a low R value and will be less than 71 bytes
+bool SigHasLowR(const secp256k1_ecdsa_signature* sig)
+{
+ unsigned char compact_sig[64];
+ secp256k1_ecdsa_signature_serialize_compact(secp256k1_context_sign, compact_sig, sig);
+
+ // In DER serialization, all values are interpreted as big-endian, signed integers. The highest bit in the integer indicates
+ // its signed-ness; 0 is positive, 1 is negative. When the value is interpreted as a negative integer, it must be converted
+ // to a positive value by prepending a 0x00 byte so that the highest bit is 0. We can avoid this prepending by ensuring that
+ // our highest bit is always 0, and thus we must check that the first byte is less than 0x80.
+ return compact_sig[0] < 0x80;
+}
+
+bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool grind, uint32_t test_case) const {
+ if (!fValid)
+ return false;
+ vchSig.resize(CPubKey::SIGNATURE_SIZE);
+ size_t nSigLen = CPubKey::SIGNATURE_SIZE;
+ unsigned char extra_entropy[32] = {0};
+ WriteLE32(extra_entropy, test_case);
+ secp256k1_ecdsa_signature sig;
+ uint32_t counter = 0;
+ int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, (!grind && test_case) ? extra_entropy : nullptr);
+
+ // Grind for low R
+ while (ret && !SigHasLowR(&sig) && grind) {
+ WriteLE32(extra_entropy, ++counter);
+ ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, extra_entropy);
+ }
+ assert(ret);
+ secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, vchSig.data(), &nSigLen, &sig);
+ vchSig.resize(nSigLen);
+ return true;
+}
+
+bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
+ if (pubkey.IsCompressed() != fCompressed) {
+ return false;
+ }
+ unsigned char rnd[8];
+ std::string str = "Bitcoin key verification\n";
+ GetRandBytes(rnd, sizeof(rnd));
+ uint256 hash;
+ CHash256().Write(MakeUCharSpan(str)).Write(rnd).Finalize(hash);
+ std::vector<unsigned char> vchSig;
+ Sign(hash, vchSig);
+ return pubkey.Verify(hash, vchSig);
+}
+
+bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
+ if (!fValid)
+ return false;
+ vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE);
+ int rec = -1;
+ secp256k1_ecdsa_recoverable_signature sig;
+ int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, nullptr);
+ assert(ret);
+ ret = secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, &vchSig[1], &rec, &sig);
+ assert(ret);
+ assert(rec != -1);
+ vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
+ return true;
+}
+
+bool CKey::SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256* merkle_root, const uint256* aux) const
+{
+ assert(sig.size() == 64);
+ secp256k1_keypair keypair;
+ if (!secp256k1_keypair_create(secp256k1_context_sign, &keypair, begin())) return false;
+ if (merkle_root) {
+ secp256k1_xonly_pubkey pubkey;
+ if (!secp256k1_keypair_xonly_pub(secp256k1_context_sign, &pubkey, nullptr, &keypair)) return false;
+ unsigned char pubkey_bytes[32];
+ if (!secp256k1_xonly_pubkey_serialize(secp256k1_context_sign, pubkey_bytes, &pubkey)) return false;
+ uint256 tweak = XOnlyPubKey(pubkey_bytes).ComputeTapTweakHash(merkle_root->IsNull() ? nullptr : merkle_root);
+ if (!secp256k1_keypair_xonly_tweak_add(GetVerifyContext(), &keypair, tweak.data())) return false;
+ }
+ bool ret = secp256k1_schnorrsig_sign(secp256k1_context_sign, sig.data(), hash.data(), &keypair, aux ? (unsigned char*)aux->data() : nullptr);
+ memory_cleanse(&keypair, sizeof(keypair));
+ return ret;
+}
+
+bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) {
+ if (!ec_seckey_import_der(secp256k1_context_sign, (unsigned char*)begin(), seckey.data(), seckey.size()))
+ return false;
+ fCompressed = vchPubKey.IsCompressed();
+ fValid = true;
+
+ if (fSkipCheck)
+ return true;
+
+ return VerifyPubKey(vchPubKey);
+}
+
+bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
+ assert(IsValid());
+ assert(IsCompressed());
+ std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
+ if ((nChild >> 31) == 0) {
+ CPubKey pubkey = GetPubKey();
+ assert(pubkey.size() == CPubKey::COMPRESSED_SIZE);
+ BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data());
+ } else {
+ assert(size() == 32);
+ BIP32Hash(cc, nChild, 0, begin(), vout.data());
+ }
+ memcpy(ccChild.begin(), vout.data()+32, 32);
+ memcpy((unsigned char*)keyChild.begin(), begin(), 32);
+ bool ret = secp256k1_ec_seckey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), vout.data());
+ keyChild.fCompressed = true;
+ keyChild.fValid = ret;
+ return ret;
+}
+
+bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {
+ out.nDepth = nDepth + 1;
+ CKeyID id = key.GetPubKey().GetID();
+ memcpy(out.vchFingerprint, &id, 4);
+ out.nChild = _nChild;
+ return key.Derive(out.key, out.chaincode, _nChild, chaincode);
+}
+
+void CExtKey::SetSeed(const unsigned char *seed, unsigned int nSeedLen) {
+ static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
+ std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
+ CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(vout.data());
+ key.Set(vout.data(), vout.data() + 32, true);
+ memcpy(chaincode.begin(), vout.data() + 32, 32);
+ nDepth = 0;
+ nChild = 0;
+ memset(vchFingerprint, 0, sizeof(vchFingerprint));
+}
+
+CExtPubKey CExtKey::Neuter() const {
+ CExtPubKey ret;
+ ret.nDepth = nDepth;
+ memcpy(ret.vchFingerprint, vchFingerprint, 4);
+ ret.nChild = nChild;
+ ret.pubkey = key.GetPubKey();
+ ret.chaincode = chaincode;
+ return ret;
+}
+
+void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {
+ code[0] = nDepth;
+ memcpy(code+1, vchFingerprint, 4);
+ code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
+ code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
+ memcpy(code+9, chaincode.begin(), 32);
+ code[41] = 0;
+ assert(key.size() == 32);
+ memcpy(code+42, key.begin(), 32);
+}
+
+void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
+ nDepth = code[0];
+ memcpy(vchFingerprint, code+1, 4);
+ nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
+ memcpy(chaincode.begin(), code+9, 32);
+ key.Set(code+42, code+BIP32_EXTKEY_SIZE, true);
+}
+
+bool ECC_InitSanityCheck() {
+ CKey key;
+ key.MakeNewKey(true);
+ CPubKey pubkey = key.GetPubKey();
+ return key.VerifyPubKey(pubkey);
+}
+
+void ECC_Start() {
+ assert(secp256k1_context_sign == nullptr);
+
+ secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+ assert(ctx != nullptr);
+
+ {
+ // Pass in a random blinding seed to the secp256k1 context.
+ std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32);
+ GetRandBytes(vseed.data(), 32);
+ bool ret = secp256k1_context_randomize(ctx, vseed.data());
+ assert(ret);
+ }
+
+ secp256k1_context_sign = ctx;
+}
+
+void ECC_Stop() {
+ secp256k1_context *ctx = secp256k1_context_sign;
+ secp256k1_context_sign = nullptr;
+
+ if (ctx) {
+ secp256k1_context_destroy(ctx);
+ }
+}