diff options
Diffstat (limited to 'src/group_impl.h')
-rw-r--r-- | src/group_impl.h | 123 |
1 files changed, 59 insertions, 64 deletions
diff --git a/src/group_impl.h b/src/group_impl.h index bce9fbdad5..b19b02a01f 100644 --- a/src/group_impl.h +++ b/src/group_impl.h @@ -161,27 +161,26 @@ static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a } } -static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) { +static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr) { size_t i = len - 1; secp256k1_fe zs; if (len > 0) { - /* The z of the final point gives us the "global Z" for the table. */ - r[i].x = a[i].x; - r[i].y = a[i].y; /* Ensure all y values are in weak normal form for fast negation of points */ - secp256k1_fe_normalize_weak(&r[i].y); - *globalz = a[i].z; - r[i].infinity = 0; + secp256k1_fe_normalize_weak(&a[i].y); zs = zr[i]; /* Work our way backwards, using the z-ratios to scale the x/y values. */ while (i > 0) { + secp256k1_gej tmpa; if (i != len - 1) { secp256k1_fe_mul(&zs, &zs, &zr[i]); } i--; - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs); + tmpa.x = a[i].x; + tmpa.y = a[i].y; + tmpa.infinity = 0; + secp256k1_ge_set_gej_zinv(&a[i], &tmpa, &zs); } } } @@ -272,37 +271,35 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { } static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a) { - /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate. - * - * Note that there is an implementation described at - * https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l - * which trades a multiply for a square, but in practice this is actually slower, - * mainly because it requires more normalizations. - */ - secp256k1_fe t1,t2,t3,t4; + /* Operations: 3 mul, 4 sqr, 8 add/half/mul_int/negate */ + secp256k1_fe l, s, t; r->infinity = a->infinity; - secp256k1_fe_mul(&r->z, &a->z, &a->y); - secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ - secp256k1_fe_sqr(&t1, &a->x); - secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ - secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ - secp256k1_fe_sqr(&t3, &a->y); - secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ - secp256k1_fe_sqr(&t4, &t3); - secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ - secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ - r->x = t3; - secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ - secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ - secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ - secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ - secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ - secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ - secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ - secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ - secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ + /* Formula used: + * L = (3/2) * X1^2 + * S = Y1^2 + * T = -X1*S + * X3 = L^2 + 2*T + * Y3 = -(L*(X3 + T) + S^2) + * Z3 = Y1*Z1 + */ + + secp256k1_fe_mul(&r->z, &a->z, &a->y); /* Z3 = Y1*Z1 (1) */ + secp256k1_fe_sqr(&s, &a->y); /* S = Y1^2 (1) */ + secp256k1_fe_sqr(&l, &a->x); /* L = X1^2 (1) */ + secp256k1_fe_mul_int(&l, 3); /* L = 3*X1^2 (3) */ + secp256k1_fe_half(&l); /* L = 3/2*X1^2 (2) */ + secp256k1_fe_negate(&t, &s, 1); /* T = -S (2) */ + secp256k1_fe_mul(&t, &t, &a->x); /* T = -X1*S (1) */ + secp256k1_fe_sqr(&r->x, &l); /* X3 = L^2 (1) */ + secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + T (2) */ + secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + 2*T (3) */ + secp256k1_fe_sqr(&s, &s); /* S' = S^2 (1) */ + secp256k1_fe_add(&t, &r->x); /* T' = X3 + T (4) */ + secp256k1_fe_mul(&r->y, &t, &l); /* Y3 = L*(X3 + T) (1) */ + secp256k1_fe_add(&r->y, &s); /* Y3 = L*(X3 + T) + S^2 (2) */ + secp256k1_fe_negate(&r->y, &r->y, 2); /* Y3 = -(L*(X3 + T) + S^2) (3) */ } static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { @@ -327,7 +324,6 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s if (rzr != NULL) { *rzr = a->y; secp256k1_fe_normalize_weak(rzr); - secp256k1_fe_mul_int(rzr, 2); } secp256k1_gej_double(r, a); @@ -493,8 +489,7 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) { - /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */ - static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); + /* Operations: 7 mul, 5 sqr, 24 add/cmov/half/mul_int/negate/normalize_weak/normalizes_to_zero */ secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr; secp256k1_fe m_alt, rr_alt; int infinity, degenerate; @@ -515,11 +510,11 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const * Z = Z1*Z2 * T = U1+U2 * M = S1+S2 - * Q = T*M^2 + * Q = -T*M^2 * R = T^2-U1*U2 - * X3 = 4*(R^2-Q) - * Y3 = 4*(R*(3*Q-2*R^2)-M^4) - * Z3 = 2*M*Z + * X3 = R^2+Q + * Y3 = -(R*(2*X3+Q)+M^4)/2 + * Z3 = M*Z * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) * * This formula has the benefit of being the same for both addition @@ -583,7 +578,8 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const * and denominator of lambda; R and M represent the explicit * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ - secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */ + secp256k1_fe_negate(&q, &t, 2); /* q = -T (3) */ + secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */ /* These two lines use the observation that either M == Malt or M == 0, * so M^3 * Malt is either Malt^4 (which is computed by squaring), or * zero (which is "computed" by cmov). So the cost is one squaring @@ -591,26 +587,21 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_fe_sqr(&n, &n); secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */ secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ - secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */ + secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */ infinity = secp256k1_fe_normalizes_to_zero(&r->z) & ~a->infinity; - secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */ - secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ - secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */ - secp256k1_fe_normalize_weak(&t); - r->x = t; /* r->x = Ralt^2-Q (1) */ - secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */ - secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */ - secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */ - secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */ - secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */ - secp256k1_fe_normalize_weak(&r->y); - secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */ - secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */ + secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */ + r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */ + secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */ + secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */ + secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */ + secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (3) */ + secp256k1_fe_negate(&r->y, &t, 3); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (4) */ + secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (3) */ /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */ secp256k1_fe_cmov(&r->x, &b->x, a->infinity); secp256k1_fe_cmov(&r->y, &b->y, a->infinity); - secp256k1_fe_cmov(&r->z, &fe_1, a->infinity); + secp256k1_fe_cmov(&r->z, &secp256k1_fe_one, a->infinity); r->infinity = infinity; } @@ -642,18 +633,22 @@ static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storag r->infinity = 0; } +static SECP256K1_INLINE void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag) { + secp256k1_fe_cmov(&r->x, &a->x, flag); + secp256k1_fe_cmov(&r->y, &a->y, flag); + secp256k1_fe_cmov(&r->z, &a->z, flag); + + r->infinity ^= (r->infinity ^ a->infinity) & flag; +} + static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { secp256k1_fe_storage_cmov(&r->x, &a->x, flag); secp256k1_fe_storage_cmov(&r->y, &a->y, flag); } static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { - static const secp256k1_fe beta = SECP256K1_FE_CONST( - 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, - 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul - ); *r = *a; - secp256k1_fe_mul(&r->x, &r->x, &beta); + secp256k1_fe_mul(&r->x, &r->x, &secp256k1_const_beta); } static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) { |