diff options
Diffstat (limited to 'src/group_impl.h')
-rw-r--r-- | src/group_impl.h | 36 |
1 files changed, 30 insertions, 6 deletions
diff --git a/src/group_impl.h b/src/group_impl.h index 42e2f6e6eb..3e9c4c410d 100644 --- a/src/group_impl.h +++ b/src/group_impl.h @@ -7,8 +7,6 @@ #ifndef _SECP256K1_GROUP_IMPL_H_ #define _SECP256K1_GROUP_IMPL_H_ -#include <string.h> - #include "num.h" #include "field.h" #include "group.h" @@ -165,7 +163,7 @@ static void secp256k1_ge_clear(secp256k1_ge *r) { secp256k1_fe_clear(&r->y); } -static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x) { +static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) { secp256k1_fe x2, x3, c; r->x = *x; secp256k1_fe_sqr(&x2, x); @@ -173,11 +171,11 @@ static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x) { r->infinity = 0; secp256k1_fe_set_int(&c, 7); secp256k1_fe_add(&c, &x3); - return secp256k1_fe_sqrt_var(&r->y, &c); + return secp256k1_fe_sqrt(&r->y, &c); } static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { - if (!secp256k1_ge_set_xquad_var(r, x)) { + if (!secp256k1_ge_set_xquad(r, x)) { return 0; } secp256k1_fe_normalize_var(&r->y); @@ -251,11 +249,23 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { } static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { - /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */ + /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate. + * + * Note that there is an implementation described at + * https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l + * which trades a multiply for a square, but in practice this is actually slower, + * mainly because it requires more normalizations. + */ secp256k1_fe t1,t2,t3,t4; /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. + * + * Having said this, if this function receives a point on a sextic twist, e.g. by + * a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6, + * since -6 does have a cube root mod p. For this point, this function will not set + * the infinity flag even though the point doubles to infinity, and the result + * point will be gibberish (z = 0 but infinity = 0). */ r->infinity = a->infinity; if (r->infinity) { @@ -623,4 +633,18 @@ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { } #endif +static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) { + secp256k1_fe yz; + + if (a->infinity) { + return 0; + } + + /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as + * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z + is */ + secp256k1_fe_mul(&yz, &a->y, &a->z); + return secp256k1_fe_is_quad_var(&yz); +} + #endif |