aboutsummaryrefslogtreecommitdiff
path: root/src/group_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/group_impl.h')
-rw-r--r--src/group_impl.h36
1 files changed, 30 insertions, 6 deletions
diff --git a/src/group_impl.h b/src/group_impl.h
index 42e2f6e6eb..3e9c4c410d 100644
--- a/src/group_impl.h
+++ b/src/group_impl.h
@@ -7,8 +7,6 @@
#ifndef _SECP256K1_GROUP_IMPL_H_
#define _SECP256K1_GROUP_IMPL_H_
-#include <string.h>
-
#include "num.h"
#include "field.h"
#include "group.h"
@@ -165,7 +163,7 @@ static void secp256k1_ge_clear(secp256k1_ge *r) {
secp256k1_fe_clear(&r->y);
}
-static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x) {
+static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
secp256k1_fe x2, x3, c;
r->x = *x;
secp256k1_fe_sqr(&x2, x);
@@ -173,11 +171,11 @@ static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x) {
r->infinity = 0;
secp256k1_fe_set_int(&c, 7);
secp256k1_fe_add(&c, &x3);
- return secp256k1_fe_sqrt_var(&r->y, &c);
+ return secp256k1_fe_sqrt(&r->y, &c);
}
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
- if (!secp256k1_ge_set_xquad_var(r, x)) {
+ if (!secp256k1_ge_set_xquad(r, x)) {
return 0;
}
secp256k1_fe_normalize_var(&r->y);
@@ -251,11 +249,23 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
}
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
- /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
+ /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
+ *
+ * Note that there is an implementation described at
+ * https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
+ * which trades a multiply for a square, but in practice this is actually slower,
+ * mainly because it requires more normalizations.
+ */
secp256k1_fe t1,t2,t3,t4;
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
+ *
+ * Having said this, if this function receives a point on a sextic twist, e.g. by
+ * a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
+ * since -6 does have a cube root mod p. For this point, this function will not set
+ * the infinity flag even though the point doubles to infinity, and the result
+ * point will be gibberish (z = 0 but infinity = 0).
*/
r->infinity = a->infinity;
if (r->infinity) {
@@ -623,4 +633,18 @@ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
}
#endif
+static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
+ secp256k1_fe yz;
+
+ if (a->infinity) {
+ return 0;
+ }
+
+ /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
+ * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
+ is */
+ secp256k1_fe_mul(&yz, &a->y, &a->z);
+ return secp256k1_fe_is_quad_var(&yz);
+}
+
#endif