diff options
Diffstat (limited to 'src/group.h')
-rw-r--r-- | src/group.h | 128 |
1 files changed, 128 insertions, 0 deletions
diff --git a/src/group.h b/src/group.h new file mode 100644 index 0000000000..ba02549821 --- /dev/null +++ b/src/group.h @@ -0,0 +1,128 @@ +/********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_GROUP_ +#define _SECP256K1_GROUP_ + +#include "num.h" +#include "field.h" + +/** A group element of the secp256k1 curve, in affine coordinates. */ +typedef struct { + secp256k1_fe_t x; + secp256k1_fe_t y; + int infinity; /* whether this represents the point at infinity */ +} secp256k1_ge_t; + +/** A group element of the secp256k1 curve, in jacobian coordinates. */ +typedef struct { + secp256k1_fe_t x; /* actual X: x/z^2 */ + secp256k1_fe_t y; /* actual Y: y/z^3 */ + secp256k1_fe_t z; + int infinity; /* whether this represents the point at infinity */ +} secp256k1_gej_t; + +/** Global constants related to the group */ +typedef struct { + secp256k1_num_t order; /* the order of the curve (= order of its generator) */ + secp256k1_num_t half_order; /* half the order of the curve (= order of its generator) */ + secp256k1_ge_t g; /* the generator point */ + +#ifdef USE_ENDOMORPHISM + /* constants related to secp256k1's efficiently computable endomorphism */ + secp256k1_fe_t beta; + secp256k1_num_t lambda, a1b2, b1, a2; +#endif +} secp256k1_ge_consts_t; + +static const secp256k1_ge_consts_t *secp256k1_ge_consts = NULL; + +/** Initialize the group module. */ +static void secp256k1_ge_start(void); + +/** De-initialize the group module. */ +static void secp256k1_ge_stop(void); + +/** Set a group element equal to the point at infinity */ +static void secp256k1_ge_set_infinity(secp256k1_ge_t *r); + +/** Set a group element equal to the point with given X and Y coordinates */ +static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); + +/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness + * for Y. Return value indicates whether the result is valid. */ +static int secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd); + +/** Check whether a group element is the point at infinity. */ +static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a); + +/** Check whether a group element is valid (i.e., on the curve). */ +static int secp256k1_ge_is_valid(const secp256k1_ge_t *a); + +static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a); + +/** Get a hex representation of a point. *rlen will be overwritten with the real length. */ +static void secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a); + +/** Set a group element equal to another which is given in jacobian coordinates */ +static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a); + +/** Set a batch of group elements equal to the inputs given in jacobian coordinates */ +static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t r[len], const secp256k1_gej_t a[len]); + + +/** Set a group element (jacobian) equal to the point at infinity. */ +static void secp256k1_gej_set_infinity(secp256k1_gej_t *r); + +/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */ +static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); + +/** Set a group element (jacobian) equal to another which is given in affine coordinates. */ +static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a); + +/** Get the X coordinate of a group element (jacobian). */ +static void secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a); + +/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ +static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a); + +/** Check whether a group element is the point at infinity. */ +static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a); + +/** Set r equal to the double of a. */ +static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a); + +/** Set r equal to the sum of a and b. */ +static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b); + +/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */ +static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); + +/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient + than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time + guarantee, and b is allowed to be infinity. */ +static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); + +/** Get a hex representation of a point. *rlen will be overwritten with the real length. */ +static void secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a); + +#ifdef USE_ENDOMORPHISM +/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ +static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a); + +/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (given that a is + not more than 256 bits). */ +static void secp256k1_gej_split_exp_var(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a); +#endif + +/** Clear a secp256k1_gej_t to prevent leaking sensitive information. */ +static void secp256k1_gej_clear(secp256k1_gej_t *r); + +/** Clear a secp256k1_ge_t to prevent leaking sensitive information. */ +static void secp256k1_ge_clear(secp256k1_ge_t *r); + + +#endif |