aboutsummaryrefslogtreecommitdiff
path: root/src/field_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/field_impl.h')
-rw-r--r--src/field_impl.h293
1 files changed, 293 insertions, 0 deletions
diff --git a/src/field_impl.h b/src/field_impl.h
new file mode 100644
index 0000000000..3a31e1844e
--- /dev/null
+++ b/src/field_impl.h
@@ -0,0 +1,293 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_FIELD_IMPL_H_
+#define _SECP256K1_FIELD_IMPL_H_
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#include "util.h"
+
+#if defined(USE_FIELD_GMP)
+#include "field_gmp_impl.h"
+#elif defined(USE_FIELD_10X26)
+#include "field_10x26_impl.h"
+#elif defined(USE_FIELD_5X52)
+#include "field_5x52_impl.h"
+#else
+#error "Please select field implementation"
+#endif
+
+static void secp256k1_fe_get_hex(char *r, int *rlen, const secp256k1_fe_t *a) {
+ if (*rlen < 65) {
+ *rlen = 65;
+ return;
+ }
+ *rlen = 65;
+ unsigned char tmp[32];
+ secp256k1_fe_t b = *a;
+ secp256k1_fe_normalize(&b);
+ secp256k1_fe_get_b32(tmp, &b);
+ for (int i=0; i<32; i++) {
+ static const char *c = "0123456789ABCDEF";
+ r[2*i] = c[(tmp[i] >> 4) & 0xF];
+ r[2*i+1] = c[(tmp[i]) & 0xF];
+ }
+ r[64] = 0x00;
+}
+
+static void secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen) {
+ unsigned char tmp[32] = {};
+ static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0,
+ 0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
+ 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0};
+ for (int i=0; i<32; i++) {
+ if (alen > i*2)
+ tmp[32 - alen/2 + i] = (cvt[(unsigned char)a[2*i]] << 4) + cvt[(unsigned char)a[2*i+1]];
+ }
+ secp256k1_fe_set_b32(r, tmp);
+}
+
+static int secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
+
+ /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
+ * { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
+ * 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
+ */
+
+ secp256k1_fe_t x2;
+ secp256k1_fe_sqr(&x2, a);
+ secp256k1_fe_mul(&x2, &x2, a);
+
+ secp256k1_fe_t x3;
+ secp256k1_fe_sqr(&x3, &x2);
+ secp256k1_fe_mul(&x3, &x3, a);
+
+ secp256k1_fe_t x6 = x3;
+ for (int j=0; j<3; j++) secp256k1_fe_sqr(&x6, &x6);
+ secp256k1_fe_mul(&x6, &x6, &x3);
+
+ secp256k1_fe_t x9 = x6;
+ for (int j=0; j<3; j++) secp256k1_fe_sqr(&x9, &x9);
+ secp256k1_fe_mul(&x9, &x9, &x3);
+
+ secp256k1_fe_t x11 = x9;
+ for (int j=0; j<2; j++) secp256k1_fe_sqr(&x11, &x11);
+ secp256k1_fe_mul(&x11, &x11, &x2);
+
+ secp256k1_fe_t x22 = x11;
+ for (int j=0; j<11; j++) secp256k1_fe_sqr(&x22, &x22);
+ secp256k1_fe_mul(&x22, &x22, &x11);
+
+ secp256k1_fe_t x44 = x22;
+ for (int j=0; j<22; j++) secp256k1_fe_sqr(&x44, &x44);
+ secp256k1_fe_mul(&x44, &x44, &x22);
+
+ secp256k1_fe_t x88 = x44;
+ for (int j=0; j<44; j++) secp256k1_fe_sqr(&x88, &x88);
+ secp256k1_fe_mul(&x88, &x88, &x44);
+
+ secp256k1_fe_t x176 = x88;
+ for (int j=0; j<88; j++) secp256k1_fe_sqr(&x176, &x176);
+ secp256k1_fe_mul(&x176, &x176, &x88);
+
+ secp256k1_fe_t x220 = x176;
+ for (int j=0; j<44; j++) secp256k1_fe_sqr(&x220, &x220);
+ secp256k1_fe_mul(&x220, &x220, &x44);
+
+ secp256k1_fe_t x223 = x220;
+ for (int j=0; j<3; j++) secp256k1_fe_sqr(&x223, &x223);
+ secp256k1_fe_mul(&x223, &x223, &x3);
+
+ /* The final result is then assembled using a sliding window over the blocks. */
+
+ secp256k1_fe_t t1 = x223;
+ for (int j=0; j<23; j++) secp256k1_fe_sqr(&t1, &t1);
+ secp256k1_fe_mul(&t1, &t1, &x22);
+ for (int j=0; j<6; j++) secp256k1_fe_sqr(&t1, &t1);
+ secp256k1_fe_mul(&t1, &t1, &x2);
+ secp256k1_fe_sqr(&t1, &t1);
+ secp256k1_fe_sqr(r, &t1);
+
+ /* Check that a square root was actually calculated */
+
+ secp256k1_fe_sqr(&t1, r);
+ secp256k1_fe_negate(&t1, &t1, 1);
+ secp256k1_fe_add(&t1, a);
+ secp256k1_fe_normalize(&t1);
+ return secp256k1_fe_is_zero(&t1);
+}
+
+static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
+
+ /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
+ * { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
+ * [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
+ */
+
+ secp256k1_fe_t x2;
+ secp256k1_fe_sqr(&x2, a);
+ secp256k1_fe_mul(&x2, &x2, a);
+
+ secp256k1_fe_t x3;
+ secp256k1_fe_sqr(&x3, &x2);
+ secp256k1_fe_mul(&x3, &x3, a);
+
+ secp256k1_fe_t x6 = x3;
+ for (int j=0; j<3; j++) secp256k1_fe_sqr(&x6, &x6);
+ secp256k1_fe_mul(&x6, &x6, &x3);
+
+ secp256k1_fe_t x9 = x6;
+ for (int j=0; j<3; j++) secp256k1_fe_sqr(&x9, &x9);
+ secp256k1_fe_mul(&x9, &x9, &x3);
+
+ secp256k1_fe_t x11 = x9;
+ for (int j=0; j<2; j++) secp256k1_fe_sqr(&x11, &x11);
+ secp256k1_fe_mul(&x11, &x11, &x2);
+
+ secp256k1_fe_t x22 = x11;
+ for (int j=0; j<11; j++) secp256k1_fe_sqr(&x22, &x22);
+ secp256k1_fe_mul(&x22, &x22, &x11);
+
+ secp256k1_fe_t x44 = x22;
+ for (int j=0; j<22; j++) secp256k1_fe_sqr(&x44, &x44);
+ secp256k1_fe_mul(&x44, &x44, &x22);
+
+ secp256k1_fe_t x88 = x44;
+ for (int j=0; j<44; j++) secp256k1_fe_sqr(&x88, &x88);
+ secp256k1_fe_mul(&x88, &x88, &x44);
+
+ secp256k1_fe_t x176 = x88;
+ for (int j=0; j<88; j++) secp256k1_fe_sqr(&x176, &x176);
+ secp256k1_fe_mul(&x176, &x176, &x88);
+
+ secp256k1_fe_t x220 = x176;
+ for (int j=0; j<44; j++) secp256k1_fe_sqr(&x220, &x220);
+ secp256k1_fe_mul(&x220, &x220, &x44);
+
+ secp256k1_fe_t x223 = x220;
+ for (int j=0; j<3; j++) secp256k1_fe_sqr(&x223, &x223);
+ secp256k1_fe_mul(&x223, &x223, &x3);
+
+ /* The final result is then assembled using a sliding window over the blocks. */
+
+ secp256k1_fe_t t1 = x223;
+ for (int j=0; j<23; j++) secp256k1_fe_sqr(&t1, &t1);
+ secp256k1_fe_mul(&t1, &t1, &x22);
+ for (int j=0; j<5; j++) secp256k1_fe_sqr(&t1, &t1);
+ secp256k1_fe_mul(&t1, &t1, a);
+ for (int j=0; j<3; j++) secp256k1_fe_sqr(&t1, &t1);
+ secp256k1_fe_mul(&t1, &t1, &x2);
+ for (int j=0; j<2; j++) secp256k1_fe_sqr(&t1, &t1);
+ secp256k1_fe_mul(r, &t1, a);
+}
+
+static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
+#if defined(USE_FIELD_INV_BUILTIN)
+ secp256k1_fe_inv(r, a);
+#elif defined(USE_FIELD_INV_NUM)
+ unsigned char b[32];
+ secp256k1_fe_t c = *a;
+ secp256k1_fe_normalize(&c);
+ secp256k1_fe_get_b32(b, &c);
+ secp256k1_num_t n;
+ secp256k1_num_set_bin(&n, b, 32);
+ secp256k1_num_mod_inverse(&n, &n, &secp256k1_fe_consts->p);
+ secp256k1_num_get_bin(b, 32, &n);
+ secp256k1_fe_set_b32(r, b);
+#else
+#error "Please select field inverse implementation"
+#endif
+}
+
+static void secp256k1_fe_inv_all(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]) {
+ if (len < 1)
+ return;
+
+ VERIFY_CHECK((r + len <= a) || (a + len <= r));
+
+ r[0] = a[0];
+
+ size_t i = 0;
+ while (++i < len) {
+ secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
+ }
+
+ secp256k1_fe_t u; secp256k1_fe_inv(&u, &r[--i]);
+
+ while (i > 0) {
+ int j = i--;
+ secp256k1_fe_mul(&r[j], &r[i], &u);
+ secp256k1_fe_mul(&u, &u, &a[j]);
+ }
+
+ r[0] = u;
+}
+
+static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]) {
+ if (len < 1)
+ return;
+
+ VERIFY_CHECK((r + len <= a) || (a + len <= r));
+
+ r[0] = a[0];
+
+ size_t i = 0;
+ while (++i < len) {
+ secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
+ }
+
+ secp256k1_fe_t u; secp256k1_fe_inv_var(&u, &r[--i]);
+
+ while (i > 0) {
+ int j = i--;
+ secp256k1_fe_mul(&r[j], &r[i], &u);
+ secp256k1_fe_mul(&u, &u, &a[j]);
+ }
+
+ r[0] = u;
+}
+
+static void secp256k1_fe_start(void) {
+ static const unsigned char secp256k1_fe_consts_p[] = {
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
+ };
+ if (secp256k1_fe_consts == NULL) {
+ secp256k1_fe_inner_start();
+ secp256k1_fe_consts_t *ret = (secp256k1_fe_consts_t*)malloc(sizeof(secp256k1_fe_consts_t));
+ secp256k1_num_set_bin(&ret->p, secp256k1_fe_consts_p, sizeof(secp256k1_fe_consts_p));
+ secp256k1_fe_consts = ret;
+ }
+}
+
+static void secp256k1_fe_stop(void) {
+ if (secp256k1_fe_consts != NULL) {
+ secp256k1_fe_consts_t *c = (secp256k1_fe_consts_t*)secp256k1_fe_consts;
+ free((void*)c);
+ secp256k1_fe_consts = NULL;
+ secp256k1_fe_inner_stop();
+ }
+}
+
+#endif