diff options
Diffstat (limited to 'src/crypto/muhash.cpp')
-rw-r--r-- | src/crypto/muhash.cpp | 277 |
1 files changed, 277 insertions, 0 deletions
diff --git a/src/crypto/muhash.cpp b/src/crypto/muhash.cpp new file mode 100644 index 0000000000..d0f59065da --- /dev/null +++ b/src/crypto/muhash.cpp @@ -0,0 +1,277 @@ +// Copyright (c) 2017-2020 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include <crypto/muhash.h> + +#include <crypto/chacha20.h> +#include <crypto/common.h> +#include <hash.h> + +#include <cassert> +#include <cstdio> +#include <limits> + +namespace { + +using limb_t = Num3072::limb_t; +using double_limb_t = Num3072::double_limb_t; +constexpr int LIMB_SIZE = Num3072::LIMB_SIZE; +constexpr int LIMBS = Num3072::LIMBS; +/** 2^3072 - 1103717, the largest 3072-bit safe prime number, is used as the modulus. */ +constexpr limb_t MAX_PRIME_DIFF = 1103717; + +/** Extract the lowest limb of [c0,c1,c2] into n, and left shift the number by 1 limb. */ +inline void extract3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& n) +{ + n = c0; + c0 = c1; + c1 = c2; + c2 = 0; +} + +/** [c0,c1] = a * b */ +inline void mul(limb_t& c0, limb_t& c1, const limb_t& a, const limb_t& b) +{ + double_limb_t t = (double_limb_t)a * b; + c1 = t >> LIMB_SIZE; + c0 = t; +} + +/* [c0,c1,c2] += n * [d0,d1,d2]. c2 is 0 initially */ +inline void mulnadd3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& d0, limb_t& d1, limb_t& d2, const limb_t& n) +{ + double_limb_t t = (double_limb_t)d0 * n + c0; + c0 = t; + t >>= LIMB_SIZE; + t += (double_limb_t)d1 * n + c1; + c1 = t; + t >>= LIMB_SIZE; + c2 = t + d2 * n; +} + +/* [c0,c1] *= n */ +inline void muln2(limb_t& c0, limb_t& c1, const limb_t& n) +{ + double_limb_t t = (double_limb_t)c0 * n; + c0 = t; + t >>= LIMB_SIZE; + t += (double_limb_t)c1 * n; + c1 = t; +} + +/** [c0,c1,c2] += a * b */ +inline void muladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b) +{ + double_limb_t t = (double_limb_t)a * b; + limb_t th = t >> LIMB_SIZE; + limb_t tl = t; + + c0 += tl; + th += (c0 < tl) ? 1 : 0; + c1 += th; + c2 += (c1 < th) ? 1 : 0; +} + +/** [c0,c1,c2] += 2 * a * b */ +inline void muldbladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b) +{ + double_limb_t t = (double_limb_t)a * b; + limb_t th = t >> LIMB_SIZE; + limb_t tl = t; + + c0 += tl; + limb_t tt = th + ((c0 < tl) ? 1 : 0); + c1 += tt; + c2 += (c1 < tt) ? 1 : 0; + c0 += tl; + th += (c0 < tl) ? 1 : 0; + c1 += th; + c2 += (c1 < th) ? 1 : 0; +} + +/** + * Add limb a to [c0,c1]: [c0,c1] += a. Then extract the lowest + * limb of [c0,c1] into n, and left shift the number by 1 limb. + * */ +inline void addnextract2(limb_t& c0, limb_t& c1, const limb_t& a, limb_t& n) +{ + limb_t c2 = 0; + + // add + c0 += a; + if (c0 < a) { + c1 += 1; + + // Handle case when c1 has overflown + if (c1 == 0) + c2 = 1; + } + + // extract + n = c0; + c0 = c1; + c1 = c2; +} + +/** in_out = in_out^(2^sq) * mul */ +inline void square_n_mul(Num3072& in_out, const int sq, const Num3072& mul) +{ + for (int j = 0; j < sq; ++j) in_out.Square(); + in_out.Multiply(mul); +} + +} // namespace + +/** Indicates wether d is larger than the modulus. */ +bool Num3072::IsOverflow() const +{ + if (this->limbs[0] <= std::numeric_limits<limb_t>::max() - MAX_PRIME_DIFF) return false; + for (int i = 1; i < LIMBS; ++i) { + if (this->limbs[i] != std::numeric_limits<limb_t>::max()) return false; + } + return true; +} + +void Num3072::FullReduce() +{ + limb_t c0 = MAX_PRIME_DIFF; + limb_t c1 = 0; + for (int i = 0; i < LIMBS; ++i) { + addnextract2(c0, c1, this->limbs[i], this->limbs[i]); + } +} + +Num3072 Num3072::GetInverse() const +{ + // For fast exponentiation a sliding window exponentiation with repunit + // precomputation is utilized. See "Fast Point Decompression for Standard + // Elliptic Curves" (Brumley, Järvinen, 2008). + + Num3072 p[12]; // p[i] = a^(2^(2^i)-1) + Num3072 out; + + p[0] = *this; + + for (int i = 0; i < 11; ++i) { + p[i + 1] = p[i]; + for (int j = 0; j < (1 << i); ++j) p[i + 1].Square(); + p[i + 1].Multiply(p[i]); + } + + out = p[11]; + + square_n_mul(out, 512, p[9]); + square_n_mul(out, 256, p[8]); + square_n_mul(out, 128, p[7]); + square_n_mul(out, 64, p[6]); + square_n_mul(out, 32, p[5]); + square_n_mul(out, 8, p[3]); + square_n_mul(out, 2, p[1]); + square_n_mul(out, 1, p[0]); + square_n_mul(out, 5, p[2]); + square_n_mul(out, 3, p[0]); + square_n_mul(out, 2, p[0]); + square_n_mul(out, 4, p[0]); + square_n_mul(out, 4, p[1]); + square_n_mul(out, 3, p[0]); + + return out; +} + +void Num3072::Multiply(const Num3072& a) +{ + limb_t c0 = 0, c1 = 0, c2 = 0; + Num3072 tmp; + + /* Compute limbs 0..N-2 of this*a into tmp, including one reduction. */ + for (int j = 0; j < LIMBS - 1; ++j) { + limb_t d0 = 0, d1 = 0, d2 = 0; + mul(d0, d1, this->limbs[1 + j], a.limbs[LIMBS + j - (1 + j)]); + for (int i = 2 + j; i < LIMBS; ++i) muladd3(d0, d1, d2, this->limbs[i], a.limbs[LIMBS + j - i]); + mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF); + for (int i = 0; i < j + 1; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[j - i]); + extract3(c0, c1, c2, tmp.limbs[j]); + } + + /* Compute limb N-1 of a*b into tmp. */ + assert(c2 == 0); + for (int i = 0; i < LIMBS; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[LIMBS - 1 - i]); + extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]); + + /* Perform a second reduction. */ + muln2(c0, c1, MAX_PRIME_DIFF); + for (int j = 0; j < LIMBS; ++j) { + addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]); + } + + assert(c1 == 0); + assert(c0 == 0 || c0 == 1); + + /* Perform up to two more reductions if the internal state has already + * overflown the MAX of Num3072 or if it is larger than the modulus or + * if both are the case. + * */ + if (this->IsOverflow()) this->FullReduce(); + if (c0) this->FullReduce(); +} + +void Num3072::Square() +{ + limb_t c0 = 0, c1 = 0, c2 = 0; + Num3072 tmp; + + /* Compute limbs 0..N-2 of this*this into tmp, including one reduction. */ + for (int j = 0; j < LIMBS - 1; ++j) { + limb_t d0 = 0, d1 = 0, d2 = 0; + for (int i = 0; i < (LIMBS - 1 - j) / 2; ++i) muldbladd3(d0, d1, d2, this->limbs[i + j + 1], this->limbs[LIMBS - 1 - i]); + if ((j + 1) & 1) muladd3(d0, d1, d2, this->limbs[(LIMBS - 1 - j) / 2 + j + 1], this->limbs[LIMBS - 1 - (LIMBS - 1 - j) / 2]); + mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF); + for (int i = 0; i < (j + 1) / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[j - i]); + if ((j + 1) & 1) muladd3(c0, c1, c2, this->limbs[(j + 1) / 2], this->limbs[j - (j + 1) / 2]); + extract3(c0, c1, c2, tmp.limbs[j]); + } + + assert(c2 == 0); + for (int i = 0; i < LIMBS / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[LIMBS - 1 - i]); + extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]); + + /* Perform a second reduction. */ + muln2(c0, c1, MAX_PRIME_DIFF); + for (int j = 0; j < LIMBS; ++j) { + addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]); + } + + assert(c1 == 0); + assert(c0 == 0 || c0 == 1); + + /* Perform up to two more reductions if the internal state has already + * overflown the MAX of Num3072 or if it is larger than the modulus or + * if both are the case. + * */ + if (this->IsOverflow()) this->FullReduce(); + if (c0) this->FullReduce(); +} + +void Num3072::SetToOne() +{ + this->limbs[0] = 1; + for (int i = 1; i < LIMBS; ++i) this->limbs[i] = 0; +} + +void Num3072::Divide(const Num3072& a) +{ + if (this->IsOverflow()) this->FullReduce(); + + Num3072 inv{}; + if (a.IsOverflow()) { + Num3072 b = a; + b.FullReduce(); + inv = b.GetInverse(); + } else { + inv = a.GetInverse(); + } + + this->Multiply(inv); + if (this->IsOverflow()) this->FullReduce(); +} |