aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/muhash.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/muhash.cpp')
-rw-r--r--src/crypto/muhash.cpp277
1 files changed, 277 insertions, 0 deletions
diff --git a/src/crypto/muhash.cpp b/src/crypto/muhash.cpp
new file mode 100644
index 0000000000..d0f59065da
--- /dev/null
+++ b/src/crypto/muhash.cpp
@@ -0,0 +1,277 @@
+// Copyright (c) 2017-2020 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#include <crypto/muhash.h>
+
+#include <crypto/chacha20.h>
+#include <crypto/common.h>
+#include <hash.h>
+
+#include <cassert>
+#include <cstdio>
+#include <limits>
+
+namespace {
+
+using limb_t = Num3072::limb_t;
+using double_limb_t = Num3072::double_limb_t;
+constexpr int LIMB_SIZE = Num3072::LIMB_SIZE;
+constexpr int LIMBS = Num3072::LIMBS;
+/** 2^3072 - 1103717, the largest 3072-bit safe prime number, is used as the modulus. */
+constexpr limb_t MAX_PRIME_DIFF = 1103717;
+
+/** Extract the lowest limb of [c0,c1,c2] into n, and left shift the number by 1 limb. */
+inline void extract3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& n)
+{
+ n = c0;
+ c0 = c1;
+ c1 = c2;
+ c2 = 0;
+}
+
+/** [c0,c1] = a * b */
+inline void mul(limb_t& c0, limb_t& c1, const limb_t& a, const limb_t& b)
+{
+ double_limb_t t = (double_limb_t)a * b;
+ c1 = t >> LIMB_SIZE;
+ c0 = t;
+}
+
+/* [c0,c1,c2] += n * [d0,d1,d2]. c2 is 0 initially */
+inline void mulnadd3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& d0, limb_t& d1, limb_t& d2, const limb_t& n)
+{
+ double_limb_t t = (double_limb_t)d0 * n + c0;
+ c0 = t;
+ t >>= LIMB_SIZE;
+ t += (double_limb_t)d1 * n + c1;
+ c1 = t;
+ t >>= LIMB_SIZE;
+ c2 = t + d2 * n;
+}
+
+/* [c0,c1] *= n */
+inline void muln2(limb_t& c0, limb_t& c1, const limb_t& n)
+{
+ double_limb_t t = (double_limb_t)c0 * n;
+ c0 = t;
+ t >>= LIMB_SIZE;
+ t += (double_limb_t)c1 * n;
+ c1 = t;
+}
+
+/** [c0,c1,c2] += a * b */
+inline void muladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
+{
+ double_limb_t t = (double_limb_t)a * b;
+ limb_t th = t >> LIMB_SIZE;
+ limb_t tl = t;
+
+ c0 += tl;
+ th += (c0 < tl) ? 1 : 0;
+ c1 += th;
+ c2 += (c1 < th) ? 1 : 0;
+}
+
+/** [c0,c1,c2] += 2 * a * b */
+inline void muldbladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
+{
+ double_limb_t t = (double_limb_t)a * b;
+ limb_t th = t >> LIMB_SIZE;
+ limb_t tl = t;
+
+ c0 += tl;
+ limb_t tt = th + ((c0 < tl) ? 1 : 0);
+ c1 += tt;
+ c2 += (c1 < tt) ? 1 : 0;
+ c0 += tl;
+ th += (c0 < tl) ? 1 : 0;
+ c1 += th;
+ c2 += (c1 < th) ? 1 : 0;
+}
+
+/**
+ * Add limb a to [c0,c1]: [c0,c1] += a. Then extract the lowest
+ * limb of [c0,c1] into n, and left shift the number by 1 limb.
+ * */
+inline void addnextract2(limb_t& c0, limb_t& c1, const limb_t& a, limb_t& n)
+{
+ limb_t c2 = 0;
+
+ // add
+ c0 += a;
+ if (c0 < a) {
+ c1 += 1;
+
+ // Handle case when c1 has overflown
+ if (c1 == 0)
+ c2 = 1;
+ }
+
+ // extract
+ n = c0;
+ c0 = c1;
+ c1 = c2;
+}
+
+/** in_out = in_out^(2^sq) * mul */
+inline void square_n_mul(Num3072& in_out, const int sq, const Num3072& mul)
+{
+ for (int j = 0; j < sq; ++j) in_out.Square();
+ in_out.Multiply(mul);
+}
+
+} // namespace
+
+/** Indicates wether d is larger than the modulus. */
+bool Num3072::IsOverflow() const
+{
+ if (this->limbs[0] <= std::numeric_limits<limb_t>::max() - MAX_PRIME_DIFF) return false;
+ for (int i = 1; i < LIMBS; ++i) {
+ if (this->limbs[i] != std::numeric_limits<limb_t>::max()) return false;
+ }
+ return true;
+}
+
+void Num3072::FullReduce()
+{
+ limb_t c0 = MAX_PRIME_DIFF;
+ limb_t c1 = 0;
+ for (int i = 0; i < LIMBS; ++i) {
+ addnextract2(c0, c1, this->limbs[i], this->limbs[i]);
+ }
+}
+
+Num3072 Num3072::GetInverse() const
+{
+ // For fast exponentiation a sliding window exponentiation with repunit
+ // precomputation is utilized. See "Fast Point Decompression for Standard
+ // Elliptic Curves" (Brumley, Järvinen, 2008).
+
+ Num3072 p[12]; // p[i] = a^(2^(2^i)-1)
+ Num3072 out;
+
+ p[0] = *this;
+
+ for (int i = 0; i < 11; ++i) {
+ p[i + 1] = p[i];
+ for (int j = 0; j < (1 << i); ++j) p[i + 1].Square();
+ p[i + 1].Multiply(p[i]);
+ }
+
+ out = p[11];
+
+ square_n_mul(out, 512, p[9]);
+ square_n_mul(out, 256, p[8]);
+ square_n_mul(out, 128, p[7]);
+ square_n_mul(out, 64, p[6]);
+ square_n_mul(out, 32, p[5]);
+ square_n_mul(out, 8, p[3]);
+ square_n_mul(out, 2, p[1]);
+ square_n_mul(out, 1, p[0]);
+ square_n_mul(out, 5, p[2]);
+ square_n_mul(out, 3, p[0]);
+ square_n_mul(out, 2, p[0]);
+ square_n_mul(out, 4, p[0]);
+ square_n_mul(out, 4, p[1]);
+ square_n_mul(out, 3, p[0]);
+
+ return out;
+}
+
+void Num3072::Multiply(const Num3072& a)
+{
+ limb_t c0 = 0, c1 = 0, c2 = 0;
+ Num3072 tmp;
+
+ /* Compute limbs 0..N-2 of this*a into tmp, including one reduction. */
+ for (int j = 0; j < LIMBS - 1; ++j) {
+ limb_t d0 = 0, d1 = 0, d2 = 0;
+ mul(d0, d1, this->limbs[1 + j], a.limbs[LIMBS + j - (1 + j)]);
+ for (int i = 2 + j; i < LIMBS; ++i) muladd3(d0, d1, d2, this->limbs[i], a.limbs[LIMBS + j - i]);
+ mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
+ for (int i = 0; i < j + 1; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[j - i]);
+ extract3(c0, c1, c2, tmp.limbs[j]);
+ }
+
+ /* Compute limb N-1 of a*b into tmp. */
+ assert(c2 == 0);
+ for (int i = 0; i < LIMBS; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[LIMBS - 1 - i]);
+ extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
+
+ /* Perform a second reduction. */
+ muln2(c0, c1, MAX_PRIME_DIFF);
+ for (int j = 0; j < LIMBS; ++j) {
+ addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
+ }
+
+ assert(c1 == 0);
+ assert(c0 == 0 || c0 == 1);
+
+ /* Perform up to two more reductions if the internal state has already
+ * overflown the MAX of Num3072 or if it is larger than the modulus or
+ * if both are the case.
+ * */
+ if (this->IsOverflow()) this->FullReduce();
+ if (c0) this->FullReduce();
+}
+
+void Num3072::Square()
+{
+ limb_t c0 = 0, c1 = 0, c2 = 0;
+ Num3072 tmp;
+
+ /* Compute limbs 0..N-2 of this*this into tmp, including one reduction. */
+ for (int j = 0; j < LIMBS - 1; ++j) {
+ limb_t d0 = 0, d1 = 0, d2 = 0;
+ for (int i = 0; i < (LIMBS - 1 - j) / 2; ++i) muldbladd3(d0, d1, d2, this->limbs[i + j + 1], this->limbs[LIMBS - 1 - i]);
+ if ((j + 1) & 1) muladd3(d0, d1, d2, this->limbs[(LIMBS - 1 - j) / 2 + j + 1], this->limbs[LIMBS - 1 - (LIMBS - 1 - j) / 2]);
+ mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
+ for (int i = 0; i < (j + 1) / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[j - i]);
+ if ((j + 1) & 1) muladd3(c0, c1, c2, this->limbs[(j + 1) / 2], this->limbs[j - (j + 1) / 2]);
+ extract3(c0, c1, c2, tmp.limbs[j]);
+ }
+
+ assert(c2 == 0);
+ for (int i = 0; i < LIMBS / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[LIMBS - 1 - i]);
+ extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
+
+ /* Perform a second reduction. */
+ muln2(c0, c1, MAX_PRIME_DIFF);
+ for (int j = 0; j < LIMBS; ++j) {
+ addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
+ }
+
+ assert(c1 == 0);
+ assert(c0 == 0 || c0 == 1);
+
+ /* Perform up to two more reductions if the internal state has already
+ * overflown the MAX of Num3072 or if it is larger than the modulus or
+ * if both are the case.
+ * */
+ if (this->IsOverflow()) this->FullReduce();
+ if (c0) this->FullReduce();
+}
+
+void Num3072::SetToOne()
+{
+ this->limbs[0] = 1;
+ for (int i = 1; i < LIMBS; ++i) this->limbs[i] = 0;
+}
+
+void Num3072::Divide(const Num3072& a)
+{
+ if (this->IsOverflow()) this->FullReduce();
+
+ Num3072 inv{};
+ if (a.IsOverflow()) {
+ Num3072 b = a;
+ b.FullReduce();
+ inv = b.GetInverse();
+ } else {
+ inv = a.GetInverse();
+ }
+
+ this->Multiply(inv);
+ if (this->IsOverflow()) this->FullReduce();
+}