aboutsummaryrefslogtreecommitdiff
path: root/src/common/bloom.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/bloom.cpp')
-rw-r--r--src/common/bloom.cpp253
1 files changed, 253 insertions, 0 deletions
diff --git a/src/common/bloom.cpp b/src/common/bloom.cpp
new file mode 100644
index 0000000000..26b70b4d14
--- /dev/null
+++ b/src/common/bloom.cpp
@@ -0,0 +1,253 @@
+// Copyright (c) 2012-2020 The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#include <common/bloom.h>
+
+#include <hash.h>
+#include <primitives/transaction.h>
+#include <random.h>
+#include <script/script.h>
+#include <script/standard.h>
+#include <span.h>
+#include <streams.h>
+
+#include <algorithm>
+#include <cmath>
+#include <cstdlib>
+#include <limits>
+#include <vector>
+
+static constexpr double LN2SQUARED = 0.4804530139182014246671025263266649717305529515945455;
+static constexpr double LN2 = 0.6931471805599453094172321214581765680755001343602552;
+
+CBloomFilter::CBloomFilter(const unsigned int nElements, const double nFPRate, const unsigned int nTweakIn, unsigned char nFlagsIn) :
+ /**
+ * The ideal size for a bloom filter with a given number of elements and false positive rate is:
+ * - nElements * log(fp rate) / ln(2)^2
+ * We ignore filter parameters which will create a bloom filter larger than the protocol limits
+ */
+ vData(std::min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
+ /**
+ * The ideal number of hash functions is filter size * ln(2) / number of elements
+ * Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
+ * See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
+ */
+ nHashFuncs(std::min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
+ nTweak(nTweakIn),
+ nFlags(nFlagsIn)
+{
+}
+
+inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, Span<const unsigned char> vDataToHash) const
+{
+ // 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
+ return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
+}
+
+void CBloomFilter::insert(Span<const unsigned char> vKey)
+{
+ if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
+ return;
+ for (unsigned int i = 0; i < nHashFuncs; i++)
+ {
+ unsigned int nIndex = Hash(i, vKey);
+ // Sets bit nIndex of vData
+ vData[nIndex >> 3] |= (1 << (7 & nIndex));
+ }
+}
+
+void CBloomFilter::insert(const COutPoint& outpoint)
+{
+ CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
+ stream << outpoint;
+ insert(stream);
+}
+
+bool CBloomFilter::contains(Span<const unsigned char> vKey) const
+{
+ if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
+ return true;
+ for (unsigned int i = 0; i < nHashFuncs; i++)
+ {
+ unsigned int nIndex = Hash(i, vKey);
+ // Checks bit nIndex of vData
+ if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
+ return false;
+ }
+ return true;
+}
+
+bool CBloomFilter::contains(const COutPoint& outpoint) const
+{
+ CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
+ stream << outpoint;
+ return contains(stream);
+}
+
+bool CBloomFilter::IsWithinSizeConstraints() const
+{
+ return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
+}
+
+bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
+{
+ bool fFound = false;
+ // Match if the filter contains the hash of tx
+ // for finding tx when they appear in a block
+ if (vData.empty()) // zero-size = "match-all" filter
+ return true;
+ const uint256& hash = tx.GetHash();
+ if (contains(hash))
+ fFound = true;
+
+ for (unsigned int i = 0; i < tx.vout.size(); i++)
+ {
+ const CTxOut& txout = tx.vout[i];
+ // Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
+ // If this matches, also add the specific output that was matched.
+ // This means clients don't have to update the filter themselves when a new relevant tx
+ // is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
+ CScript::const_iterator pc = txout.scriptPubKey.begin();
+ std::vector<unsigned char> data;
+ while (pc < txout.scriptPubKey.end())
+ {
+ opcodetype opcode;
+ if (!txout.scriptPubKey.GetOp(pc, opcode, data))
+ break;
+ if (data.size() != 0 && contains(data))
+ {
+ fFound = true;
+ if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
+ insert(COutPoint(hash, i));
+ else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
+ {
+ std::vector<std::vector<unsigned char> > vSolutions;
+ TxoutType type = Solver(txout.scriptPubKey, vSolutions);
+ if (type == TxoutType::PUBKEY || type == TxoutType::MULTISIG) {
+ insert(COutPoint(hash, i));
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ if (fFound)
+ return true;
+
+ for (const CTxIn& txin : tx.vin)
+ {
+ // Match if the filter contains an outpoint tx spends
+ if (contains(txin.prevout))
+ return true;
+
+ // Match if the filter contains any arbitrary script data element in any scriptSig in tx
+ CScript::const_iterator pc = txin.scriptSig.begin();
+ std::vector<unsigned char> data;
+ while (pc < txin.scriptSig.end())
+ {
+ opcodetype opcode;
+ if (!txin.scriptSig.GetOp(pc, opcode, data))
+ break;
+ if (data.size() != 0 && contains(data))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+CRollingBloomFilter::CRollingBloomFilter(const unsigned int nElements, const double fpRate)
+{
+ double logFpRate = log(fpRate);
+ /* The optimal number of hash functions is log(fpRate) / log(0.5), but
+ * restrict it to the range 1-50. */
+ nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
+ /* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
+ nEntriesPerGeneration = (nElements + 1) / 2;
+ uint32_t nMaxElements = nEntriesPerGeneration * 3;
+ /* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
+ * => pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
+ * => 1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
+ * => log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
+ * => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
+ * => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
+ */
+ uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
+ data.clear();
+ /* For each data element we need to store 2 bits. If both bits are 0, the
+ * bit is treated as unset. If the bits are (01), (10), or (11), the bit is
+ * treated as set in generation 1, 2, or 3 respectively.
+ * These bits are stored in separate integers: position P corresponds to bit
+ * (P & 63) of the integers data[(P >> 6) * 2] and data[(P >> 6) * 2 + 1]. */
+ data.resize(((nFilterBits + 63) / 64) << 1);
+ reset();
+}
+
+/* Similar to CBloomFilter::Hash */
+static inline uint32_t RollingBloomHash(unsigned int nHashNum, uint32_t nTweak, Span<const unsigned char> vDataToHash)
+{
+ return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash);
+}
+
+
+// A replacement for x % n. This assumes that x and n are 32bit integers, and x is a uniformly random distributed 32bit value
+// which should be the case for a good hash.
+// See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
+static inline uint32_t FastMod(uint32_t x, size_t n) {
+ return ((uint64_t)x * (uint64_t)n) >> 32;
+}
+
+void CRollingBloomFilter::insert(Span<const unsigned char> vKey)
+{
+ if (nEntriesThisGeneration == nEntriesPerGeneration) {
+ nEntriesThisGeneration = 0;
+ nGeneration++;
+ if (nGeneration == 4) {
+ nGeneration = 1;
+ }
+ uint64_t nGenerationMask1 = 0 - (uint64_t)(nGeneration & 1);
+ uint64_t nGenerationMask2 = 0 - (uint64_t)(nGeneration >> 1);
+ /* Wipe old entries that used this generation number. */
+ for (uint32_t p = 0; p < data.size(); p += 2) {
+ uint64_t p1 = data[p], p2 = data[p + 1];
+ uint64_t mask = (p1 ^ nGenerationMask1) | (p2 ^ nGenerationMask2);
+ data[p] = p1 & mask;
+ data[p + 1] = p2 & mask;
+ }
+ }
+ nEntriesThisGeneration++;
+
+ for (int n = 0; n < nHashFuncs; n++) {
+ uint32_t h = RollingBloomHash(n, nTweak, vKey);
+ int bit = h & 0x3F;
+ /* FastMod works with the upper bits of h, so it is safe to ignore that the lower bits of h are already used for bit. */
+ uint32_t pos = FastMod(h, data.size());
+ /* The lowest bit of pos is ignored, and set to zero for the first bit, and to one for the second. */
+ data[pos & ~1] = (data[pos & ~1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration & 1)) << bit;
+ data[pos | 1] = (data[pos | 1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration >> 1)) << bit;
+ }
+}
+
+bool CRollingBloomFilter::contains(Span<const unsigned char> vKey) const
+{
+ for (int n = 0; n < nHashFuncs; n++) {
+ uint32_t h = RollingBloomHash(n, nTweak, vKey);
+ int bit = h & 0x3F;
+ uint32_t pos = FastMod(h, data.size());
+ /* If the relevant bit is not set in either data[pos & ~1] or data[pos | 1], the filter does not contain vKey */
+ if (!(((data[pos & ~1] | data[pos | 1]) >> bit) & 1)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+void CRollingBloomFilter::reset()
+{
+ nTweak = GetRand(std::numeric_limits<unsigned int>::max());
+ nEntriesThisGeneration = 0;
+ nGeneration = 1;
+ std::fill(data.begin(), data.end(), 0);
+}