diff options
Diffstat (limited to 'src/cluster_linearize.h')
-rw-r--r-- | src/cluster_linearize.h | 505 |
1 files changed, 397 insertions, 108 deletions
diff --git a/src/cluster_linearize.h b/src/cluster_linearize.h index 607ae681d2..757c81f108 100644 --- a/src/cluster_linearize.h +++ b/src/cluster_linearize.h @@ -19,14 +19,6 @@ namespace cluster_linearize { -/** Data type to represent cluster input. - * - * cluster[i].first is tx_i's fee and size. - * cluster[i].second[j] is true iff tx_i spends one or more of tx_j's outputs. - */ -template<typename SetType> -using Cluster = std::vector<std::pair<FeeFrac, SetType>>; - /** Data type to represent transaction indices in clusters. */ using ClusterIndex = uint32_t; @@ -54,12 +46,23 @@ class DepGraph Entry(const FeeFrac& f, const SetType& a, const SetType& d) noexcept : feerate(f), ancestors(a), descendants(d) {} }; - /** Data for each transaction, in the same order as the Cluster it was constructed from. */ + /** Data for each transaction. */ std::vector<Entry> entries; + /** Which positions are used. */ + SetType m_used; + public: /** Equality operator (primarily for testing purposes). */ - friend bool operator==(const DepGraph&, const DepGraph&) noexcept = default; + friend bool operator==(const DepGraph& a, const DepGraph& b) noexcept + { + if (a.m_used != b.m_used) return false; + // Only compare the used positions within the entries vector. + for (auto idx : a.m_used) { + if (a.entries[idx] != b.entries[idx]) return false; + } + return true; + } // Default constructors. DepGraph() noexcept = default; @@ -68,58 +71,51 @@ public: DepGraph& operator=(const DepGraph&) noexcept = default; DepGraph& operator=(DepGraph&&) noexcept = default; - /** Construct a DepGraph object for ntx transactions, with no dependencies. + /** Construct a DepGraph object given another DepGraph and a mapping from old to new. * - * Complexity: O(N) where N=ntx. - **/ - explicit DepGraph(ClusterIndex ntx) noexcept - { - Assume(ntx <= SetType::Size()); - entries.resize(ntx); - for (ClusterIndex i = 0; i < ntx; ++i) { - entries[i].ancestors = SetType::Singleton(i); - entries[i].descendants = SetType::Singleton(i); - } - } - - /** Construct a DepGraph object given a cluster. + * @param depgraph The original DepGraph that is being remapped. + * + * @param mapping A Span such that mapping[i] gives the position in the new DepGraph + * for position i in the old depgraph. Its size must be equal to + * depgraph.PositionRange(). The value of mapping[i] is ignored if + * position i is a hole in depgraph (i.e., if !depgraph.Positions()[i]). + * + * @param pos_range The PositionRange() for the new DepGraph. It must equal the largest + * value in mapping for any used position in depgraph plus 1, or 0 if + * depgraph.TxCount() == 0. * - * Complexity: O(N^2) where N=cluster.size(). + * Complexity: O(N^2) where N=depgraph.TxCount(). */ - explicit DepGraph(const Cluster<SetType>& cluster) noexcept : entries(cluster.size()) + DepGraph(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> mapping, ClusterIndex pos_range) noexcept : entries(pos_range) { - for (ClusterIndex i = 0; i < cluster.size(); ++i) { + Assume(mapping.size() == depgraph.PositionRange()); + Assume((pos_range == 0) == (depgraph.TxCount() == 0)); + for (ClusterIndex i : depgraph.Positions()) { + auto new_idx = mapping[i]; + Assume(new_idx < pos_range); + // Add transaction. + entries[new_idx].ancestors = SetType::Singleton(new_idx); + entries[new_idx].descendants = SetType::Singleton(new_idx); + m_used.Set(new_idx); // Fill in fee and size. - entries[i].feerate = cluster[i].first; - // Fill in direct parents as ancestors. - entries[i].ancestors = cluster[i].second; - // Make sure transactions are ancestors of themselves. - entries[i].ancestors.Set(i); - } - - // Propagate ancestor information. - for (ClusterIndex i = 0; i < entries.size(); ++i) { - // At this point, entries[a].ancestors[b] is true iff b is an ancestor of a and there - // is a path from a to b through the subgraph consisting of {a, b} union - // {0, 1, ..., (i-1)}. - SetType to_merge = entries[i].ancestors; - for (ClusterIndex j = 0; j < entries.size(); ++j) { - if (entries[j].ancestors[i]) { - entries[j].ancestors |= to_merge; - } - } + entries[new_idx].feerate = depgraph.entries[i].feerate; } - - // Fill in descendant information by transposing the ancestor information. - for (ClusterIndex i = 0; i < entries.size(); ++i) { - for (auto j : entries[i].ancestors) { - entries[j].descendants.Set(i); - } + for (ClusterIndex i : depgraph.Positions()) { + // Fill in dependencies by mapping direct parents. + SetType parents; + for (auto j : depgraph.GetReducedParents(i)) parents.Set(mapping[j]); + AddDependencies(parents, mapping[i]); } + // Verify that the provided pos_range was correct (no unused positions at the end). + Assume(m_used.None() ? (pos_range == 0) : (pos_range == m_used.Last() + 1)); } + /** Get the set of transactions positions in use. Complexity: O(1). */ + const SetType& Positions() const noexcept { return m_used; } + /** Get the range of positions in this DepGraph. All entries in Positions() are in [0, PositionRange() - 1]. */ + ClusterIndex PositionRange() const noexcept { return entries.size(); } /** Get the number of transactions in the graph. Complexity: O(1). */ - auto TxCount() const noexcept { return entries.size(); } + auto TxCount() const noexcept { return m_used.Count(); } /** Get the feerate of a given transaction i. Complexity: O(1). */ const FeeFrac& FeeRate(ClusterIndex i) const noexcept { return entries[i].feerate; } /** Get the mutable feerate of a given transaction i. Complexity: O(1). */ @@ -129,39 +125,120 @@ public: /** Get the descendants of a given transaction i. Complexity: O(1). */ const SetType& Descendants(ClusterIndex i) const noexcept { return entries[i].descendants; } - /** Add a new unconnected transaction to this transaction graph (at the end), and return its - * ClusterIndex. + /** Add a new unconnected transaction to this transaction graph (in the first available + * position), and return its ClusterIndex. * * Complexity: O(1) (amortized, due to resizing of backing vector). */ ClusterIndex AddTransaction(const FeeFrac& feefrac) noexcept { - Assume(TxCount() < SetType::Size()); - ClusterIndex new_idx = TxCount(); - entries.emplace_back(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx)); + static constexpr auto ALL_POSITIONS = SetType::Fill(SetType::Size()); + auto available = ALL_POSITIONS - m_used; + Assume(available.Any()); + ClusterIndex new_idx = available.First(); + if (new_idx == entries.size()) { + entries.emplace_back(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx)); + } else { + entries[new_idx] = Entry(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx)); + } + m_used.Set(new_idx); return new_idx; } - /** Modify this transaction graph, adding a dependency between a specified parent and child. + /** Remove the specified positions from this DepGraph. + * + * The specified positions will no longer be part of Positions(), and dependencies with them are + * removed. Note that due to DepGraph only tracking ancestors/descendants (and not direct + * dependencies), if a parent is removed while a grandparent remains, the grandparent will + * remain an ancestor. * * Complexity: O(N) where N=TxCount(). - **/ - void AddDependency(ClusterIndex parent, ClusterIndex child) noexcept + */ + void RemoveTransactions(const SetType& del) noexcept + { + m_used -= del; + // Remove now-unused trailing entries. + while (!entries.empty() && !m_used[entries.size() - 1]) { + entries.pop_back(); + } + // Remove the deleted transactions from ancestors/descendants of other transactions. Note + // that the deleted positions will retain old feerate and dependency information. This does + // not matter as they will be overwritten by AddTransaction if they get used again. + for (auto& entry : entries) { + entry.ancestors &= m_used; + entry.descendants &= m_used; + } + } + + /** Modify this transaction graph, adding multiple parents to a specified child. + * + * Complexity: O(N) where N=TxCount(). + */ + void AddDependencies(const SetType& parents, ClusterIndex child) noexcept { - // Bail out if dependency is already implied. - if (entries[child].ancestors[parent]) return; - // To each ancestor of the parent, add as descendants the descendants of the child. + Assume(m_used[child]); + Assume(parents.IsSubsetOf(m_used)); + // Compute the ancestors of parents that are not already ancestors of child. + SetType par_anc; + for (auto par : parents - Ancestors(child)) { + par_anc |= Ancestors(par); + } + par_anc -= Ancestors(child); + // Bail out if there are no such ancestors. + if (par_anc.None()) return; + // To each such ancestor, add as descendants the descendants of the child. const auto& chl_des = entries[child].descendants; - for (auto anc_of_par : Ancestors(parent)) { + for (auto anc_of_par : par_anc) { entries[anc_of_par].descendants |= chl_des; } - // To each descendant of the child, add as ancestors the ancestors of the parent. - const auto& par_anc = entries[parent].ancestors; + // To each descendant of the child, add those ancestors. for (auto dec_of_chl : Descendants(child)) { entries[dec_of_chl].ancestors |= par_anc; } } + /** Compute the (reduced) set of parents of node i in this graph. + * + * This returns the minimal subset of the parents of i whose ancestors together equal all of + * i's ancestors (unless i is part of a cycle of dependencies). Note that DepGraph does not + * store the set of parents; this information is inferred from the ancestor sets. + * + * Complexity: O(N) where N=Ancestors(i).Count() (which is bounded by TxCount()). + */ + SetType GetReducedParents(ClusterIndex i) const noexcept + { + SetType parents = Ancestors(i); + parents.Reset(i); + for (auto parent : parents) { + if (parents[parent]) { + parents -= Ancestors(parent); + parents.Set(parent); + } + } + return parents; + } + + /** Compute the (reduced) set of children of node i in this graph. + * + * This returns the minimal subset of the children of i whose descendants together equal all of + * i's descendants (unless i is part of a cycle of dependencies). Note that DepGraph does not + * store the set of children; this information is inferred from the descendant sets. + * + * Complexity: O(N) where N=Descendants(i).Count() (which is bounded by TxCount()). + */ + SetType GetReducedChildren(ClusterIndex i) const noexcept + { + SetType children = Descendants(i); + children.Reset(i); + for (auto child : children) { + if (children[child]) { + children -= Descendants(child); + children.Set(child); + } + } + return children; + } + /** Compute the aggregate feerate of a set of nodes in this graph. * * Complexity: O(N) where N=elems.Count(). @@ -215,7 +292,7 @@ public: * * Complexity: O(TxCount()). */ - bool IsConnected() const noexcept { return IsConnected(SetType::Fill(TxCount())); } + bool IsConnected() const noexcept { return IsConnected(m_used); } /** Append the entries of select to list in a topologically valid order. * @@ -257,6 +334,14 @@ struct SetInfo explicit SetInfo(const DepGraph<SetType>& depgraph, const SetType& txn) noexcept : transactions(txn), feerate(depgraph.FeeRate(txn)) {} + /** Add a transaction to this SetInfo (which must not yet be in it). */ + void Set(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept + { + Assume(!transactions[pos]); + transactions.Set(pos); + feerate += depgraph.FeeRate(pos); + } + /** Add the transactions of other to this SetInfo (no overlap allowed). */ SetInfo& operator|=(const SetInfo& other) noexcept { @@ -457,11 +542,11 @@ public: */ AncestorCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept : m_depgraph(depgraph), - m_todo{SetType::Fill(depgraph.TxCount())}, - m_ancestor_set_feerates(depgraph.TxCount()) + m_todo{depgraph.Positions()}, + m_ancestor_set_feerates(depgraph.PositionRange()) { // Precompute ancestor-set feerates. - for (ClusterIndex i = 0; i < depgraph.TxCount(); ++i) { + for (ClusterIndex i : m_depgraph.Positions()) { /** The remaining ancestors for transaction i. */ SetType anc_to_add = m_depgraph.Ancestors(i); FeeFrac anc_feerate; @@ -506,6 +591,12 @@ public: return m_todo.None(); } + /** Count the number of remaining unlinearized transactions. */ + ClusterIndex NumRemaining() const noexcept + { + return m_todo.Count(); + } + /** Find the best (highest-feerate, smallest among those in case of a tie) ancestor set * among the remaining transactions. Requires !AllDone(). * @@ -541,23 +632,64 @@ class SearchCandidateFinder { /** Internal RNG. */ InsecureRandomContext m_rng; - /** Internal dependency graph for the cluster. */ - const DepGraph<SetType>& m_depgraph; - /** Which transactions are left to do (sorted indices). */ + /** m_sorted_to_original[i] is the original position that sorted transaction position i had. */ + std::vector<ClusterIndex> m_sorted_to_original; + /** m_original_to_sorted[i] is the sorted position original transaction position i has. */ + std::vector<ClusterIndex> m_original_to_sorted; + /** Internal dependency graph for the cluster (with transactions in decreasing individual + * feerate order). */ + DepGraph<SetType> m_sorted_depgraph; + /** Which transactions are left to do (indices in m_sorted_depgraph's order). */ SetType m_todo; + /** Given a set of transactions with sorted indices, get their original indices. */ + SetType SortedToOriginal(const SetType& arg) const noexcept + { + SetType ret; + for (auto pos : arg) ret.Set(m_sorted_to_original[pos]); + return ret; + } + + /** Given a set of transactions with original indices, get their sorted indices. */ + SetType OriginalToSorted(const SetType& arg) const noexcept + { + SetType ret; + for (auto pos : arg) ret.Set(m_original_to_sorted[pos]); + return ret; + } + public: /** Construct a candidate finder for a graph. * * @param[in] depgraph Dependency graph for the to-be-linearized cluster. * @param[in] rng_seed A random seed to control the search order. * - * Complexity: O(1). + * Complexity: O(N^2) where N=depgraph.Count(). */ - SearchCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND, uint64_t rng_seed) noexcept : + SearchCandidateFinder(const DepGraph<SetType>& depgraph, uint64_t rng_seed) noexcept : m_rng(rng_seed), - m_depgraph(depgraph), - m_todo(SetType::Fill(depgraph.TxCount())) {} + m_sorted_to_original(depgraph.TxCount()), + m_original_to_sorted(depgraph.PositionRange()) + { + // Determine reordering mapping, by sorting by decreasing feerate. Unusued positions are + // not included, as they will never be looked up anyway. + ClusterIndex sorted_pos{0}; + for (auto i : depgraph.Positions()) { + m_sorted_to_original[sorted_pos++] = i; + } + std::sort(m_sorted_to_original.begin(), m_sorted_to_original.end(), [&](auto a, auto b) { + auto feerate_cmp = depgraph.FeeRate(a) <=> depgraph.FeeRate(b); + if (feerate_cmp == 0) return a < b; + return feerate_cmp > 0; + }); + // Compute reverse mapping. + for (ClusterIndex i = 0; i < m_sorted_to_original.size(); ++i) { + m_original_to_sorted[m_sorted_to_original[i]] = i; + } + // Compute reordered dependency graph. + m_sorted_depgraph = DepGraph(depgraph, m_original_to_sorted, m_sorted_to_original.size()); + m_todo = m_sorted_depgraph.Positions(); + } /** Check whether any unlinearized transactions remain. */ bool AllDone() const noexcept @@ -580,12 +712,15 @@ public: * be <= max_iterations. If strictly < max_iterations, the * returned subset is optimal. * - * Complexity: O(N * min(max_iterations, 2^N)) where N=depgraph.TxCount(). + * Complexity: possibly O(N * min(max_iterations, sqrt(2^N))) where N=depgraph.TxCount(). */ std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations, SetInfo<SetType> best) noexcept { Assume(!AllDone()); + // Convert the provided best to internal sorted indices. + best.transactions = OriginalToSorted(best.transactions); + /** Type for work queue items. */ struct WorkItem { @@ -596,16 +731,27 @@ public: /** Set of undecided transactions. This must be a subset of m_todo, and have no overlap * with inc. The set (inc | und) must be topologically valid. */ SetType und; + /** (Only when inc is not empty) The best feerate of any superset of inc that is also a + * subset of (inc | und), without requiring it to be topologically valid. It forms a + * conservative upper bound on how good a set this work item can give rise to. + * Transactions whose feerate is below best's are ignored when determining this value, + * which means it may technically be an underestimate, but if so, this work item + * cannot result in something that beats best anyway. */ + FeeFrac pot_feerate; /** Construct a new work item. */ - WorkItem(SetInfo<SetType>&& i, SetType&& u) noexcept : - inc(std::move(i)), und(std::move(u)) {} + WorkItem(SetInfo<SetType>&& i, SetType&& u, FeeFrac&& p_f) noexcept : + inc(std::move(i)), und(std::move(u)), pot_feerate(std::move(p_f)) + { + Assume(pot_feerate.IsEmpty() == inc.feerate.IsEmpty()); + } /** Swap two WorkItems. */ void Swap(WorkItem& other) noexcept { swap(inc, other.inc); swap(und, other.und); + swap(pot_feerate, other.pot_feerate); } }; @@ -613,39 +759,111 @@ public: VecDeque<WorkItem> queue; queue.reserve(std::max<size_t>(256, 2 * m_todo.Count())); - // Create an initial entry with m_todo as undecided. Also use it as best if not provided, - // so that during the work processing loop below, and during the add_fn/split_fn calls, we - // do not need to deal with the best=empty case. - if (best.feerate.IsEmpty()) best = SetInfo(m_depgraph, m_todo); - queue.emplace_back(SetInfo<SetType>{}, SetType{m_todo}); + // Create initial entries per connected component of m_todo. While clusters themselves are + // generally connected, this is not necessarily true after some parts have already been + // removed from m_todo. Without this, effort can be wasted on searching "inc" sets that + // span multiple components. + auto to_cover = m_todo; + do { + auto component = m_sorted_depgraph.FindConnectedComponent(to_cover); + to_cover -= component; + // If best is not provided, set it to the first component, so that during the work + // processing loop below, and during the add_fn/split_fn calls, we do not need to deal + // with the best=empty case. + if (best.feerate.IsEmpty()) best = SetInfo(m_sorted_depgraph, component); + queue.emplace_back(/*inc=*/SetInfo<SetType>{}, + /*und=*/std::move(component), + /*pot_feerate=*/FeeFrac{}); + } while (to_cover.Any()); /** Local copy of the iteration limit. */ uint64_t iterations_left = max_iterations; + /** The set of transactions in m_todo which have feerate > best's. */ + SetType imp = m_todo; + while (imp.Any()) { + ClusterIndex check = imp.Last(); + if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break; + imp.Reset(check); + } + /** Internal function to add an item to the queue of elements to explore if there are any - * transactions left to split on, and to update best. + * transactions left to split on, possibly improving it before doing so, and to update + * best/imp. * * - inc: the "inc" value for the new work item (must be topological). * - und: the "und" value for the new work item ((inc | und) must be topological). */ auto add_fn = [&](SetInfo<SetType> inc, SetType und) noexcept { + /** SetInfo object with the set whose feerate will become the new work item's + * pot_feerate. It starts off equal to inc. */ + auto pot = inc; if (!inc.feerate.IsEmpty()) { + // Add entries to pot. We iterate over all undecided transactions whose feerate is + // higher than best. While undecided transactions of lower feerate may improve pot, + // the resulting pot feerate cannot possibly exceed best's (and this item will be + // skipped in split_fn anyway). + for (auto pos : imp & und) { + // Determine if adding transaction pos to pot (ignoring topology) would improve + // it. If not, we're done updating pot. This relies on the fact that + // m_sorted_depgraph, and thus the transactions iterated over, are in decreasing + // individual feerate order. + if (!(m_sorted_depgraph.FeeRate(pos) >> pot.feerate)) break; + pot.Set(m_sorted_depgraph, pos); + } + + // The "jump ahead" optimization: whenever pot has a topologically-valid subset, + // that subset can be added to inc. Any subset of (pot - inc) has the property that + // its feerate exceeds that of any set compatible with this work item (superset of + // inc, subset of (inc | und)). Thus, if T is a topological subset of pot, and B is + // the best topologically-valid set compatible with this work item, and (T - B) is + // non-empty, then (T | B) is better than B and also topological. This is in + // contradiction with the assumption that B is best. Thus, (T - B) must be empty, + // or T must be a subset of B. + // + // See https://delvingbitcoin.org/t/how-to-linearize-your-cluster/303 section 2.4. + const auto init_inc = inc.transactions; + for (auto pos : pot.transactions - inc.transactions) { + // If the transaction's ancestors are a subset of pot, we can add it together + // with its ancestors to inc. Just update the transactions here; the feerate + // update happens below. + auto anc_todo = m_sorted_depgraph.Ancestors(pos) & m_todo; + if (anc_todo.IsSubsetOf(pot.transactions)) inc.transactions |= anc_todo; + } + // Finally update und and inc's feerate to account for the added transactions. + und -= inc.transactions; + inc.feerate += m_sorted_depgraph.FeeRate(inc.transactions - init_inc); + // If inc's feerate is better than best's, remember it as our new best. if (inc.feerate > best.feerate) { best = inc; + // See if we can remove any entries from imp now. + while (imp.Any()) { + ClusterIndex check = imp.Last(); + if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break; + imp.Reset(check); + } } + + // If no potential transactions exist beyond the already included ones, no + // improvement is possible anymore. + if (pot.feerate.size == inc.feerate.size) return; + // At this point und must be non-empty. If it were empty then pot would equal inc. + Assume(und.Any()); } else { Assume(inc.transactions.None()); + // If inc is empty, we just make sure there are undecided transactions left to + // split on. + if (und.None()) return; } - // Make sure there are undecided transactions left to split on. - if (und.None()) return; - // Actually construct a new work item on the queue. Due to the switch to DFS when queue // space runs out (see below), we know that no reallocation of the queue should ever // occur. Assume(queue.size() < queue.capacity()); - queue.emplace_back(std::move(inc), std::move(und)); + queue.emplace_back(/*inc=*/std::move(inc), + /*und=*/std::move(und), + /*pot_feerate=*/std::move(pot.feerate)); }; /** Internal process function. It takes an existing work item, and splits it in two: one @@ -659,18 +877,66 @@ public: Assume(elem.inc.transactions.IsSubsetOf(m_todo) && elem.und.IsSubsetOf(m_todo)); // Included transactions cannot be undecided. Assume(!elem.inc.transactions.Overlaps(elem.und)); + // If pot is empty, then so is inc. + Assume(elem.inc.feerate.IsEmpty() == elem.pot_feerate.IsEmpty()); + + const ClusterIndex first = elem.und.First(); + if (!elem.inc.feerate.IsEmpty()) { + // If no undecided transactions remain with feerate higher than best, this entry + // cannot be improved beyond best. + if (!elem.und.Overlaps(imp)) return; + // We can ignore any queue item whose potential feerate isn't better than the best + // seen so far. + if (elem.pot_feerate <= best.feerate) return; + } else { + // In case inc is empty use a simpler alternative check. + if (m_sorted_depgraph.FeeRate(first) <= best.feerate) return; + } - // Pick the first undecided transaction as the one to split on. - const ClusterIndex split = elem.und.First(); + // Decide which transaction to split on. Splitting is how new work items are added, and + // how progress is made. One split transaction is chosen among the queue item's + // undecided ones, and: + // - A work item is (potentially) added with that transaction plus its remaining + // descendants excluded (removed from the und set). + // - A work item is (potentially) added with that transaction plus its remaining + // ancestors included (added to the inc set). + // + // To decide what to split on, consider the undecided ancestors of the highest + // individual feerate undecided transaction. Pick the one which reduces the search space + // most. Let I(t) be the size of the undecided set after including t, and E(t) the size + // of the undecided set after excluding t. Then choose the split transaction t such + // that 2^I(t) + 2^E(t) is minimal, tie-breaking by highest individual feerate for t. + ClusterIndex split = 0; + const auto select = elem.und & m_sorted_depgraph.Ancestors(first); + Assume(select.Any()); + std::optional<std::pair<ClusterIndex, ClusterIndex>> split_counts; + for (auto t : select) { + // Call max = max(I(t), E(t)) and min = min(I(t), E(t)). Let counts = {max,min}. + // Sorting by the tuple counts is equivalent to sorting by 2^I(t) + 2^E(t). This + // expression is equal to 2^max + 2^min = 2^max * (1 + 1/2^(max - min)). The second + // factor (1 + 1/2^(max - min)) there is in (1,2]. Thus increasing max will always + // increase it, even when min decreases. Because of this, we can first sort by max. + std::pair<ClusterIndex, ClusterIndex> counts{ + (elem.und - m_sorted_depgraph.Ancestors(t)).Count(), + (elem.und - m_sorted_depgraph.Descendants(t)).Count()}; + if (counts.first < counts.second) std::swap(counts.first, counts.second); + // Remember the t with the lowest counts. + if (!split_counts.has_value() || counts < *split_counts) { + split = t; + split_counts = counts; + } + } + // Since there was at least one transaction in select, we must always find one. + Assume(split_counts.has_value()); // Add a work item corresponding to exclusion of the split transaction. - const auto& desc = m_depgraph.Descendants(split); + const auto& desc = m_sorted_depgraph.Descendants(split); add_fn(/*inc=*/elem.inc, /*und=*/elem.und - desc); // Add a work item corresponding to inclusion of the split transaction. - const auto anc = m_depgraph.Ancestors(split) & m_todo; - add_fn(/*inc=*/elem.inc.Add(m_depgraph, anc), + const auto anc = m_sorted_depgraph.Ancestors(split) & m_todo; + add_fn(/*inc=*/elem.inc.Add(m_sorted_depgraph, anc), /*und=*/elem.und - anc); // Account for the performed split. @@ -713,7 +979,9 @@ public: split_fn(std::move(elem)); } - // Return the found best set and the number of iterations performed. + // Return the found best set (converted to the original transaction indices), and the + // number of iterations performed. + best.transactions = SortedToOriginal(best.transactions); return {std::move(best), max_iterations - iterations_left}; } @@ -723,9 +991,10 @@ public: */ void MarkDone(const SetType& done) noexcept { - Assume(done.Any()); - Assume(done.IsSubsetOf(m_todo)); - m_todo -= done; + const auto done_sorted = OriginalToSorted(done); + Assume(done_sorted.Any()); + Assume(done_sorted.IsSubsetOf(m_todo)); + m_todo -= done_sorted; } }; @@ -744,7 +1013,7 @@ public: * - A boolean indicating whether the result is guaranteed to be * optimal. * - * Complexity: O(N * min(max_iterations + N, 2^N)) where N=depgraph.TxCount(). + * Complexity: possibly O(N * min(max_iterations + N, sqrt(2^N))) where N=depgraph.TxCount(). */ template<typename SetType> std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, Span<const ClusterIndex> old_linearization = {}) noexcept @@ -756,10 +1025,20 @@ std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& de std::vector<ClusterIndex> linearization; AncestorCandidateFinder anc_finder(depgraph); - SearchCandidateFinder src_finder(depgraph, rng_seed); + std::optional<SearchCandidateFinder<SetType>> src_finder; linearization.reserve(depgraph.TxCount()); bool optimal = true; + // Treat the initialization of SearchCandidateFinder as taking N^2/64 (rounded up) iterations + // (largely due to the cost of constructing the internal sorted-by-feerate DepGraph inside + // SearchCandidateFinder), a rough approximation based on benchmark. If we don't have that + // many, don't start it. + uint64_t start_iterations = (uint64_t{depgraph.TxCount()} * depgraph.TxCount() + 63) / 64; + if (iterations_left > start_iterations) { + iterations_left -= start_iterations; + src_finder.emplace(depgraph, rng_seed); + } + /** Chunking of what remains of the old linearization. */ LinearizationChunking old_chunking(depgraph, old_linearization); @@ -772,12 +1051,22 @@ std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& de auto best = anc_finder.FindCandidateSet(); if (!best_prefix.feerate.IsEmpty() && best_prefix.feerate >= best.feerate) best = best_prefix; - // Invoke bounded search to update best, with up to half of our remaining iterations as - // limit. - uint64_t max_iterations_now = (iterations_left + 1) / 2; uint64_t iterations_done_now = 0; - std::tie(best, iterations_done_now) = src_finder.FindCandidateSet(max_iterations_now, best); - iterations_left -= iterations_done_now; + uint64_t max_iterations_now = 0; + if (src_finder) { + // Treat the invocation of SearchCandidateFinder::FindCandidateSet() as costing N/4 + // up-front (rounded up) iterations (largely due to the cost of connected-component + // splitting), a rough approximation based on benchmarks. + uint64_t base_iterations = (anc_finder.NumRemaining() + 3) / 4; + if (iterations_left > base_iterations) { + // Invoke bounded search to update best, with up to half of our remaining + // iterations as limit. + iterations_left -= base_iterations; + max_iterations_now = (iterations_left + 1) / 2; + std::tie(best, iterations_done_now) = src_finder->FindCandidateSet(max_iterations_now, best); + iterations_left -= iterations_done_now; + } + } if (iterations_done_now == max_iterations_now) { optimal = false; @@ -795,7 +1084,7 @@ std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& de // Update state to reflect best is no longer to be linearized. anc_finder.MarkDone(best.transactions); if (anc_finder.AllDone()) break; - src_finder.MarkDone(best.transactions); + if (src_finder) src_finder->MarkDone(best.transactions); if (old_chunking.NumChunksLeft() > 0) { old_chunking.MarkDone(best.transactions); } @@ -911,7 +1200,7 @@ void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> lineari // During an even pass, the diagram above would correspond to linearization [2,3,0,1], with // groups [2] and [3,0,1]. - std::vector<TxEntry> entries(linearization.size() + 1); + std::vector<TxEntry> entries(depgraph.PositionRange() + 1); // Perform two passes over the linearization. for (int pass = 0; pass < 2; ++pass) { |