aboutsummaryrefslogtreecommitdiff
path: root/src/cluster_linearize.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/cluster_linearize.h')
-rw-r--r--src/cluster_linearize.h743
1 files changed, 743 insertions, 0 deletions
diff --git a/src/cluster_linearize.h b/src/cluster_linearize.h
new file mode 100644
index 0000000000..07d28a9aa5
--- /dev/null
+++ b/src/cluster_linearize.h
@@ -0,0 +1,743 @@
+// Copyright (c) The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#ifndef BITCOIN_CLUSTER_LINEARIZE_H
+#define BITCOIN_CLUSTER_LINEARIZE_H
+
+#include <algorithm>
+#include <numeric>
+#include <optional>
+#include <stdint.h>
+#include <vector>
+#include <utility>
+
+#include <random.h>
+#include <span.h>
+#include <util/feefrac.h>
+#include <util/vecdeque.h>
+
+namespace cluster_linearize {
+
+/** Data type to represent cluster input.
+ *
+ * cluster[i].first is tx_i's fee and size.
+ * cluster[i].second[j] is true iff tx_i spends one or more of tx_j's outputs.
+ */
+template<typename SetType>
+using Cluster = std::vector<std::pair<FeeFrac, SetType>>;
+
+/** Data type to represent transaction indices in clusters. */
+using ClusterIndex = uint32_t;
+
+/** Data structure that holds a transaction graph's preprocessed data (fee, size, ancestors,
+ * descendants). */
+template<typename SetType>
+class DepGraph
+{
+ /** Information about a single transaction. */
+ struct Entry
+ {
+ /** Fee and size of transaction itself. */
+ FeeFrac feerate;
+ /** All ancestors of the transaction (including itself). */
+ SetType ancestors;
+ /** All descendants of the transaction (including itself). */
+ SetType descendants;
+
+ /** Equality operator (primarily for for testing purposes). */
+ friend bool operator==(const Entry&, const Entry&) noexcept = default;
+
+ /** Construct an empty entry. */
+ Entry() noexcept = default;
+ /** Construct an entry with a given feerate, ancestor set, descendant set. */
+ Entry(const FeeFrac& f, const SetType& a, const SetType& d) noexcept : feerate(f), ancestors(a), descendants(d) {}
+ };
+
+ /** Data for each transaction, in the same order as the Cluster it was constructed from. */
+ std::vector<Entry> entries;
+
+public:
+ /** Equality operator (primarily for testing purposes). */
+ friend bool operator==(const DepGraph&, const DepGraph&) noexcept = default;
+
+ // Default constructors.
+ DepGraph() noexcept = default;
+ DepGraph(const DepGraph&) noexcept = default;
+ DepGraph(DepGraph&&) noexcept = default;
+ DepGraph& operator=(const DepGraph&) noexcept = default;
+ DepGraph& operator=(DepGraph&&) noexcept = default;
+
+ /** Construct a DepGraph object for ntx transactions, with no dependencies.
+ *
+ * Complexity: O(N) where N=ntx.
+ **/
+ explicit DepGraph(ClusterIndex ntx) noexcept
+ {
+ Assume(ntx <= SetType::Size());
+ entries.resize(ntx);
+ for (ClusterIndex i = 0; i < ntx; ++i) {
+ entries[i].ancestors = SetType::Singleton(i);
+ entries[i].descendants = SetType::Singleton(i);
+ }
+ }
+
+ /** Construct a DepGraph object given a cluster.
+ *
+ * Complexity: O(N^2) where N=cluster.size().
+ */
+ explicit DepGraph(const Cluster<SetType>& cluster) noexcept : entries(cluster.size())
+ {
+ for (ClusterIndex i = 0; i < cluster.size(); ++i) {
+ // Fill in fee and size.
+ entries[i].feerate = cluster[i].first;
+ // Fill in direct parents as ancestors.
+ entries[i].ancestors = cluster[i].second;
+ // Make sure transactions are ancestors of themselves.
+ entries[i].ancestors.Set(i);
+ }
+
+ // Propagate ancestor information.
+ for (ClusterIndex i = 0; i < entries.size(); ++i) {
+ // At this point, entries[a].ancestors[b] is true iff b is an ancestor of a and there
+ // is a path from a to b through the subgraph consisting of {a, b} union
+ // {0, 1, ..., (i-1)}.
+ SetType to_merge = entries[i].ancestors;
+ for (ClusterIndex j = 0; j < entries.size(); ++j) {
+ if (entries[j].ancestors[i]) {
+ entries[j].ancestors |= to_merge;
+ }
+ }
+ }
+
+ // Fill in descendant information by transposing the ancestor information.
+ for (ClusterIndex i = 0; i < entries.size(); ++i) {
+ for (auto j : entries[i].ancestors) {
+ entries[j].descendants.Set(i);
+ }
+ }
+ }
+
+ /** Get the number of transactions in the graph. Complexity: O(1). */
+ auto TxCount() const noexcept { return entries.size(); }
+ /** Get the feerate of a given transaction i. Complexity: O(1). */
+ const FeeFrac& FeeRate(ClusterIndex i) const noexcept { return entries[i].feerate; }
+ /** Get the ancestors of a given transaction i. Complexity: O(1). */
+ const SetType& Ancestors(ClusterIndex i) const noexcept { return entries[i].ancestors; }
+ /** Get the descendants of a given transaction i. Complexity: O(1). */
+ const SetType& Descendants(ClusterIndex i) const noexcept { return entries[i].descendants; }
+
+ /** Add a new unconnected transaction to this transaction graph (at the end), and return its
+ * ClusterIndex.
+ *
+ * Complexity: O(1) (amortized, due to resizing of backing vector).
+ */
+ ClusterIndex AddTransaction(const FeeFrac& feefrac) noexcept
+ {
+ Assume(TxCount() < SetType::Size());
+ ClusterIndex new_idx = TxCount();
+ entries.emplace_back(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx));
+ return new_idx;
+ }
+
+ /** Modify this transaction graph, adding a dependency between a specified parent and child.
+ *
+ * Complexity: O(N) where N=TxCount().
+ **/
+ void AddDependency(ClusterIndex parent, ClusterIndex child) noexcept
+ {
+ // Bail out if dependency is already implied.
+ if (entries[child].ancestors[parent]) return;
+ // To each ancestor of the parent, add as descendants the descendants of the child.
+ const auto& chl_des = entries[child].descendants;
+ for (auto anc_of_par : Ancestors(parent)) {
+ entries[anc_of_par].descendants |= chl_des;
+ }
+ // To each descendant of the child, add as ancestors the ancestors of the parent.
+ const auto& par_anc = entries[parent].ancestors;
+ for (auto dec_of_chl : Descendants(child)) {
+ entries[dec_of_chl].ancestors |= par_anc;
+ }
+ }
+
+ /** Compute the aggregate feerate of a set of nodes in this graph.
+ *
+ * Complexity: O(N) where N=elems.Count().
+ **/
+ FeeFrac FeeRate(const SetType& elems) const noexcept
+ {
+ FeeFrac ret;
+ for (auto pos : elems) ret += entries[pos].feerate;
+ return ret;
+ }
+
+ /** Append the entries of select to list in a topologically valid order.
+ *
+ * Complexity: O(select.Count() * log(select.Count())).
+ */
+ void AppendTopo(std::vector<ClusterIndex>& list, const SetType& select) const noexcept
+ {
+ ClusterIndex old_len = list.size();
+ for (auto i : select) list.push_back(i);
+ std::sort(list.begin() + old_len, list.end(), [&](ClusterIndex a, ClusterIndex b) noexcept {
+ const auto a_anc_count = entries[a].ancestors.Count();
+ const auto b_anc_count = entries[b].ancestors.Count();
+ if (a_anc_count != b_anc_count) return a_anc_count < b_anc_count;
+ return a < b;
+ });
+ }
+};
+
+/** A set of transactions together with their aggregate feerate. */
+template<typename SetType>
+struct SetInfo
+{
+ /** The transactions in the set. */
+ SetType transactions;
+ /** Their combined fee and size. */
+ FeeFrac feerate;
+
+ /** Construct a SetInfo for the empty set. */
+ SetInfo() noexcept = default;
+
+ /** Construct a SetInfo for a specified set and feerate. */
+ SetInfo(const SetType& txn, const FeeFrac& fr) noexcept : transactions(txn), feerate(fr) {}
+
+ /** Construct a SetInfo for a given transaction in a depgraph. */
+ explicit SetInfo(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept :
+ transactions(SetType::Singleton(pos)), feerate(depgraph.FeeRate(pos)) {}
+
+ /** Construct a SetInfo for a set of transactions in a depgraph. */
+ explicit SetInfo(const DepGraph<SetType>& depgraph, const SetType& txn) noexcept :
+ transactions(txn), feerate(depgraph.FeeRate(txn)) {}
+
+ /** Add the transactions of other to this SetInfo (no overlap allowed). */
+ SetInfo& operator|=(const SetInfo& other) noexcept
+ {
+ Assume(!transactions.Overlaps(other.transactions));
+ transactions |= other.transactions;
+ feerate += other.feerate;
+ return *this;
+ }
+
+ /** Construct a new SetInfo equal to this, with more transactions added (which may overlap
+ * with the existing transactions in the SetInfo). */
+ [[nodiscard]] SetInfo Add(const DepGraph<SetType>& depgraph, const SetType& txn) const noexcept
+ {
+ return {transactions | txn, feerate + depgraph.FeeRate(txn - transactions)};
+ }
+
+ /** Swap two SetInfo objects. */
+ friend void swap(SetInfo& a, SetInfo& b) noexcept
+ {
+ swap(a.transactions, b.transactions);
+ swap(a.feerate, b.feerate);
+ }
+
+ /** Permit equality testing. */
+ friend bool operator==(const SetInfo&, const SetInfo&) noexcept = default;
+};
+
+/** Compute the feerates of the chunks of linearization. */
+template<typename SetType>
+std::vector<FeeFrac> ChunkLinearization(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> linearization) noexcept
+{
+ std::vector<FeeFrac> ret;
+ for (ClusterIndex i : linearization) {
+ /** The new chunk to be added, initially a singleton. */
+ auto new_chunk = depgraph.FeeRate(i);
+ // As long as the new chunk has a higher feerate than the last chunk so far, absorb it.
+ while (!ret.empty() && new_chunk >> ret.back()) {
+ new_chunk += ret.back();
+ ret.pop_back();
+ }
+ // Actually move that new chunk into the chunking.
+ ret.push_back(std::move(new_chunk));
+ }
+ return ret;
+}
+
+/** Data structure encapsulating the chunking of a linearization, permitting removal of subsets. */
+template<typename SetType>
+class LinearizationChunking
+{
+ /** The depgraph this linearization is for. */
+ const DepGraph<SetType>& m_depgraph;
+
+ /** The linearization we started from. */
+ Span<const ClusterIndex> m_linearization;
+
+ /** Chunk sets and their feerates, of what remains of the linearization. */
+ std::vector<SetInfo<SetType>> m_chunks;
+
+ /** Which transactions remain in the linearization. */
+ SetType m_todo;
+
+ /** Fill the m_chunks variable. */
+ void BuildChunks() noexcept
+ {
+ // Caller must clear m_chunks.
+ Assume(m_chunks.empty());
+
+ // Iterate over the entries in m_linearization. This is effectively the same
+ // algorithm as ChunkLinearization, but supports skipping parts of the linearization and
+ // keeps track of the sets themselves instead of just their feerates.
+ for (auto idx : m_linearization) {
+ if (!m_todo[idx]) continue;
+ // Start with an initial chunk containing just element idx.
+ SetInfo add(m_depgraph, idx);
+ // Absorb existing final chunks into add while they have lower feerate.
+ while (!m_chunks.empty() && add.feerate >> m_chunks.back().feerate) {
+ add |= m_chunks.back();
+ m_chunks.pop_back();
+ }
+ // Remember new chunk.
+ m_chunks.push_back(std::move(add));
+ }
+ }
+
+public:
+ /** Initialize a LinearizationSubset object for a given length of linearization. */
+ explicit LinearizationChunking(const DepGraph<SetType>& depgraph LIFETIMEBOUND, Span<const ClusterIndex> lin LIFETIMEBOUND) noexcept :
+ m_depgraph(depgraph), m_linearization(lin)
+ {
+ // Mark everything in lin as todo still.
+ for (auto i : m_linearization) m_todo.Set(i);
+ // Compute the initial chunking.
+ m_chunks.reserve(depgraph.TxCount());
+ BuildChunks();
+ }
+
+ /** Determine how many chunks remain in the linearization. */
+ ClusterIndex NumChunksLeft() const noexcept { return m_chunks.size(); }
+
+ /** Access a chunk. Chunk 0 is the highest-feerate prefix of what remains. */
+ const SetInfo<SetType>& GetChunk(ClusterIndex n) const noexcept
+ {
+ Assume(n < m_chunks.size());
+ return m_chunks[n];
+ }
+
+ /** Remove some subset of transactions from the linearization. */
+ void MarkDone(SetType subset) noexcept
+ {
+ Assume(subset.Any());
+ Assume(subset.IsSubsetOf(m_todo));
+ m_todo -= subset;
+ // Rechunk what remains of m_linearization.
+ m_chunks.clear();
+ BuildChunks();
+ }
+
+ /** Find the shortest intersection between subset and the prefixes of remaining chunks
+ * of the linearization that has a feerate not below subset's.
+ *
+ * This is a crucial operation in guaranteeing improvements to linearizations. If subset has
+ * a feerate not below GetChunk(0)'s, then moving Intersect(subset) to the front of (what
+ * remains of) the linearization is guaranteed not to make it worse at any point.
+ *
+ * See https://delvingbitcoin.org/t/introduction-to-cluster-linearization/1032 for background.
+ */
+ SetInfo<SetType> Intersect(const SetInfo<SetType>& subset) const noexcept
+ {
+ Assume(subset.transactions.IsSubsetOf(m_todo));
+ SetInfo<SetType> accumulator;
+ // Iterate over all chunks of the remaining linearization.
+ for (ClusterIndex i = 0; i < NumChunksLeft(); ++i) {
+ // Find what (if any) intersection the chunk has with subset.
+ const SetType to_add = GetChunk(i).transactions & subset.transactions;
+ if (to_add.Any()) {
+ // If adding that to accumulator makes us hit all of subset, we are done as no
+ // shorter intersection with higher/equal feerate exists.
+ accumulator.transactions |= to_add;
+ if (accumulator.transactions == subset.transactions) break;
+ // Otherwise update the accumulator feerate.
+ accumulator.feerate += m_depgraph.FeeRate(to_add);
+ // If that does result in something better, or something with the same feerate but
+ // smaller, return that. Even if a longer, higher-feerate intersection exists, it
+ // does not hurt to return the shorter one (the remainder of the longer intersection
+ // will generally be found in the next call to Intersect, but even if not, it is not
+ // required for the improvement guarantee this function makes).
+ if (!(accumulator.feerate << subset.feerate)) return accumulator;
+ }
+ }
+ return subset;
+ }
+};
+
+/** Class encapsulating the state needed to find the best remaining ancestor set.
+ *
+ * It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
+ * MarkDone.
+ *
+ * As long as any part of the graph remains, FindCandidateSet() can be called which will return a
+ * SetInfo with the highest-feerate ancestor set that remains (an ancestor set is a single
+ * transaction together with all its remaining ancestors).
+ */
+template<typename SetType>
+class AncestorCandidateFinder
+{
+ /** Internal dependency graph. */
+ const DepGraph<SetType>& m_depgraph;
+ /** Which transaction are left to include. */
+ SetType m_todo;
+ /** Precomputed ancestor-set feerates (only kept up-to-date for indices in m_todo). */
+ std::vector<FeeFrac> m_ancestor_set_feerates;
+
+public:
+ /** Construct an AncestorCandidateFinder for a given cluster.
+ *
+ * Complexity: O(N^2) where N=depgraph.TxCount().
+ */
+ AncestorCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
+ m_depgraph(depgraph),
+ m_todo{SetType::Fill(depgraph.TxCount())},
+ m_ancestor_set_feerates(depgraph.TxCount())
+ {
+ // Precompute ancestor-set feerates.
+ for (ClusterIndex i = 0; i < depgraph.TxCount(); ++i) {
+ /** The remaining ancestors for transaction i. */
+ SetType anc_to_add = m_depgraph.Ancestors(i);
+ FeeFrac anc_feerate;
+ // Reuse accumulated feerate from first ancestor, if usable.
+ Assume(anc_to_add.Any());
+ ClusterIndex first = anc_to_add.First();
+ if (first < i) {
+ anc_feerate = m_ancestor_set_feerates[first];
+ Assume(!anc_feerate.IsEmpty());
+ anc_to_add -= m_depgraph.Ancestors(first);
+ }
+ // Add in other ancestors (which necessarily include i itself).
+ Assume(anc_to_add[i]);
+ anc_feerate += m_depgraph.FeeRate(anc_to_add);
+ // Store the result.
+ m_ancestor_set_feerates[i] = anc_feerate;
+ }
+ }
+
+ /** Remove a set of transactions from the set of to-be-linearized ones.
+ *
+ * The same transaction may not be MarkDone()'d twice.
+ *
+ * Complexity: O(N*M) where N=depgraph.TxCount(), M=select.Count().
+ */
+ void MarkDone(SetType select) noexcept
+ {
+ Assume(select.Any());
+ Assume(select.IsSubsetOf(m_todo));
+ m_todo -= select;
+ for (auto i : select) {
+ auto feerate = m_depgraph.FeeRate(i);
+ for (auto j : m_depgraph.Descendants(i) & m_todo) {
+ m_ancestor_set_feerates[j] -= feerate;
+ }
+ }
+ }
+
+ /** Check whether any unlinearized transactions remain. */
+ bool AllDone() const noexcept
+ {
+ return m_todo.None();
+ }
+
+ /** Find the best (highest-feerate, smallest among those in case of a tie) ancestor set
+ * among the remaining transactions. Requires !AllDone().
+ *
+ * Complexity: O(N) where N=depgraph.TxCount();
+ */
+ SetInfo<SetType> FindCandidateSet() const noexcept
+ {
+ Assume(!AllDone());
+ std::optional<ClusterIndex> best;
+ for (auto i : m_todo) {
+ if (best.has_value()) {
+ Assume(!m_ancestor_set_feerates[i].IsEmpty());
+ if (!(m_ancestor_set_feerates[i] > m_ancestor_set_feerates[*best])) continue;
+ }
+ best = i;
+ }
+ Assume(best.has_value());
+ return {m_depgraph.Ancestors(*best) & m_todo, m_ancestor_set_feerates[*best]};
+ }
+};
+
+/** Class encapsulating the state needed to perform search for good candidate sets.
+ *
+ * It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
+ * MarkDone().
+ *
+ * As long as any part of the graph remains, FindCandidateSet() can be called to perform a search
+ * over the set of topologically-valid subsets of that remainder, with a limit on how many
+ * combinations are tried.
+ */
+template<typename SetType>
+class SearchCandidateFinder
+{
+ /** Internal RNG. */
+ InsecureRandomContext m_rng;
+ /** Internal dependency graph for the cluster. */
+ const DepGraph<SetType>& m_depgraph;
+ /** Which transactions are left to do (sorted indices). */
+ SetType m_todo;
+
+public:
+ /** Construct a candidate finder for a graph.
+ *
+ * @param[in] depgraph Dependency graph for the to-be-linearized cluster.
+ * @param[in] rng_seed A random seed to control the search order.
+ *
+ * Complexity: O(1).
+ */
+ SearchCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND, uint64_t rng_seed) noexcept :
+ m_rng(rng_seed),
+ m_depgraph(depgraph),
+ m_todo(SetType::Fill(depgraph.TxCount())) {}
+
+ /** Check whether any unlinearized transactions remain. */
+ bool AllDone() const noexcept
+ {
+ return m_todo.None();
+ }
+
+ /** Find a high-feerate topologically-valid subset of what remains of the cluster.
+ * Requires !AllDone().
+ *
+ * @param[in] max_iterations The maximum number of optimization steps that will be performed.
+ * @param[in] best A set/feerate pair with an already-known good candidate. This may
+ * be empty.
+ * @return A pair of:
+ * - The best (highest feerate, smallest size as tiebreaker)
+ * topologically valid subset (and its feerate) that was
+ * encountered during search. It will be at least as good as the
+ * best passed in (if not empty).
+ * - The number of optimization steps that were performed. This will
+ * be <= max_iterations. If strictly < max_iterations, the
+ * returned subset is optimal.
+ *
+ * Complexity: O(N * min(max_iterations, 2^N)) where N=depgraph.TxCount().
+ */
+ std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations, SetInfo<SetType> best) noexcept
+ {
+ Assume(!AllDone());
+
+ /** Type for work queue items. */
+ struct WorkItem
+ {
+ /** Set of transactions definitely included (and its feerate). This must be a subset
+ * of m_todo, and be topologically valid (includes all in-m_todo ancestors of
+ * itself). */
+ SetInfo<SetType> inc;
+ /** Set of undecided transactions. This must be a subset of m_todo, and have no overlap
+ * with inc. The set (inc | und) must be topologically valid. */
+ SetType und;
+
+ /** Construct a new work item. */
+ WorkItem(SetInfo<SetType>&& i, SetType&& u) noexcept :
+ inc(std::move(i)), und(std::move(u)) {}
+
+ /** Swap two WorkItems. */
+ void Swap(WorkItem& other) noexcept
+ {
+ swap(inc, other.inc);
+ swap(und, other.und);
+ }
+ };
+
+ /** The queue of work items. */
+ VecDeque<WorkItem> queue;
+ queue.reserve(std::max<size_t>(256, 2 * m_todo.Count()));
+
+ // Create an initial entry with m_todo as undecided. Also use it as best if not provided,
+ // so that during the work processing loop below, and during the add_fn/split_fn calls, we
+ // do not need to deal with the best=empty case.
+ if (best.feerate.IsEmpty()) best = SetInfo(m_depgraph, m_todo);
+ queue.emplace_back(SetInfo<SetType>{}, SetType{m_todo});
+
+ /** Local copy of the iteration limit. */
+ uint64_t iterations_left = max_iterations;
+
+ /** Internal function to add an item to the queue of elements to explore if there are any
+ * transactions left to split on, and to update best.
+ *
+ * - inc: the "inc" value for the new work item (must be topological).
+ * - und: the "und" value for the new work item ((inc | und) must be topological).
+ */
+ auto add_fn = [&](SetInfo<SetType> inc, SetType und) noexcept {
+ if (!inc.feerate.IsEmpty()) {
+ // If inc's feerate is better than best's, remember it as our new best.
+ if (inc.feerate > best.feerate) {
+ best = inc;
+ }
+ } else {
+ Assume(inc.transactions.None());
+ }
+
+ // Make sure there are undecided transactions left to split on.
+ if (und.None()) return;
+
+ // Actually construct a new work item on the queue. Due to the switch to DFS when queue
+ // space runs out (see below), we know that no reallocation of the queue should ever
+ // occur.
+ Assume(queue.size() < queue.capacity());
+ queue.emplace_back(std::move(inc), std::move(und));
+ };
+
+ /** Internal process function. It takes an existing work item, and splits it in two: one
+ * with a particular transaction (and its ancestors) included, and one with that
+ * transaction (and its descendants) excluded. */
+ auto split_fn = [&](WorkItem&& elem) noexcept {
+ // Any queue element must have undecided transactions left, otherwise there is nothing
+ // to explore anymore.
+ Assume(elem.und.Any());
+ // The included and undecided set are all subsets of m_todo.
+ Assume(elem.inc.transactions.IsSubsetOf(m_todo) && elem.und.IsSubsetOf(m_todo));
+ // Included transactions cannot be undecided.
+ Assume(!elem.inc.transactions.Overlaps(elem.und));
+
+ // Pick the first undecided transaction as the one to split on.
+ const ClusterIndex split = elem.und.First();
+
+ // Add a work item corresponding to exclusion of the split transaction.
+ const auto& desc = m_depgraph.Descendants(split);
+ add_fn(/*inc=*/elem.inc,
+ /*und=*/elem.und - desc);
+
+ // Add a work item corresponding to inclusion of the split transaction.
+ const auto anc = m_depgraph.Ancestors(split) & m_todo;
+ add_fn(/*inc=*/elem.inc.Add(m_depgraph, anc),
+ /*und=*/elem.und - anc);
+
+ // Account for the performed split.
+ --iterations_left;
+ };
+
+ // Work processing loop.
+ //
+ // New work items are always added at the back of the queue, but items to process use a
+ // hybrid approach where they can be taken from the front or the back.
+ //
+ // Depth-first search (DFS) corresponds to always taking from the back of the queue. This
+ // is very memory-efficient (linear in the number of transactions). Breadth-first search
+ // (BFS) corresponds to always taking from the front, which potentially uses more memory
+ // (up to exponential in the transaction count), but seems to work better in practice.
+ //
+ // The approach here combines the two: use BFS (plus random swapping) until the queue grows
+ // too large, at which point we temporarily switch to DFS until the size shrinks again.
+ while (!queue.empty()) {
+ // Randomly swap the first two items to randomize the search order.
+ if (queue.size() > 1 && m_rng.randbool()) {
+ queue[0].Swap(queue[1]);
+ }
+
+ // Processing the first queue item, and then using DFS for everything it gives rise to,
+ // may increase the queue size by the number of undecided elements in there, minus 1
+ // for the first queue item being removed. Thus, only when that pushes the queue over
+ // its capacity can we not process from the front (BFS), and should we use DFS.
+ while (queue.size() - 1 + queue.front().und.Count() > queue.capacity()) {
+ if (!iterations_left) break;
+ auto elem = queue.back();
+ queue.pop_back();
+ split_fn(std::move(elem));
+ }
+
+ // Process one entry from the front of the queue (BFS exploration)
+ if (!iterations_left) break;
+ auto elem = queue.front();
+ queue.pop_front();
+ split_fn(std::move(elem));
+ }
+
+ // Return the found best set and the number of iterations performed.
+ return {std::move(best), max_iterations - iterations_left};
+ }
+
+ /** Remove a subset of transactions from the cluster being linearized.
+ *
+ * Complexity: O(N) where N=done.Count().
+ */
+ void MarkDone(const SetType& done) noexcept
+ {
+ Assume(done.Any());
+ Assume(done.IsSubsetOf(m_todo));
+ m_todo -= done;
+ }
+};
+
+/** Find or improve a linearization for a cluster.
+ *
+ * @param[in] depgraph Dependency graph of the cluster to be linearized.
+ * @param[in] max_iterations Upper bound on the number of optimization steps that will be done.
+ * @param[in] rng_seed A random number seed to control search order. This prevents peers
+ * from predicting exactly which clusters would be hard for us to
+ * linearize.
+ * @param[in] old_linearization An existing linearization for the cluster (which must be
+ * topologically valid), or empty.
+ * @return A pair of:
+ * - The resulting linearization. It is guaranteed to be at least as
+ * good (in the feerate diagram sense) as old_linearization.
+ * - A boolean indicating whether the result is guaranteed to be
+ * optimal.
+ *
+ * Complexity: O(N * min(max_iterations + N, 2^N)) where N=depgraph.TxCount().
+ */
+template<typename SetType>
+std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, Span<const ClusterIndex> old_linearization = {}) noexcept
+{
+ Assume(old_linearization.empty() || old_linearization.size() == depgraph.TxCount());
+ if (depgraph.TxCount() == 0) return {{}, true};
+
+ uint64_t iterations_left = max_iterations;
+ std::vector<ClusterIndex> linearization;
+
+ AncestorCandidateFinder anc_finder(depgraph);
+ SearchCandidateFinder src_finder(depgraph, rng_seed);
+ linearization.reserve(depgraph.TxCount());
+ bool optimal = true;
+
+ /** Chunking of what remains of the old linearization. */
+ LinearizationChunking old_chunking(depgraph, old_linearization);
+
+ while (true) {
+ // Find the highest-feerate prefix of the remainder of old_linearization.
+ SetInfo<SetType> best_prefix;
+ if (old_chunking.NumChunksLeft()) best_prefix = old_chunking.GetChunk(0);
+
+ // Then initialize best to be either the best remaining ancestor set, or the first chunk.
+ auto best = anc_finder.FindCandidateSet();
+ if (!best_prefix.feerate.IsEmpty() && best_prefix.feerate >= best.feerate) best = best_prefix;
+
+ // Invoke bounded search to update best, with up to half of our remaining iterations as
+ // limit.
+ uint64_t max_iterations_now = (iterations_left + 1) / 2;
+ uint64_t iterations_done_now = 0;
+ std::tie(best, iterations_done_now) = src_finder.FindCandidateSet(max_iterations_now, best);
+ iterations_left -= iterations_done_now;
+
+ if (iterations_done_now == max_iterations_now) {
+ optimal = false;
+ // If the search result is not (guaranteed to be) optimal, run intersections to make
+ // sure we don't pick something that makes us unable to reach further diagram points
+ // of the old linearization.
+ if (old_chunking.NumChunksLeft() > 0) {
+ best = old_chunking.Intersect(best);
+ }
+ }
+
+ // Add to output in topological order.
+ depgraph.AppendTopo(linearization, best.transactions);
+
+ // Update state to reflect best is no longer to be linearized.
+ anc_finder.MarkDone(best.transactions);
+ if (anc_finder.AllDone()) break;
+ src_finder.MarkDone(best.transactions);
+ if (old_chunking.NumChunksLeft() > 0) {
+ old_chunking.MarkDone(best.transactions);
+ }
+ }
+
+ return {std::move(linearization), optimal};
+}
+
+} // namespace cluster_linearize
+
+#endif // BITCOIN_CLUSTER_LINEARIZE_H