aboutsummaryrefslogtreecommitdiff
path: root/src/bench/bench.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/bench/bench.cpp')
-rw-r--r--src/bench/bench.cpp45
1 files changed, 22 insertions, 23 deletions
diff --git a/src/bench/bench.cpp b/src/bench/bench.cpp
index 849d924af2..1482452814 100644
--- a/src/bench/bench.cpp
+++ b/src/bench/bench.cpp
@@ -2,35 +2,31 @@
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
-#include "bench.h"
-#include "perf.h"
+#include <bench/bench.h>
+#include <bench/perf.h>
#include <assert.h>
#include <iostream>
#include <iomanip>
-#include <sys/time.h>
benchmark::BenchRunner::BenchmarkMap &benchmark::BenchRunner::benchmarks() {
static std::map<std::string, benchmark::BenchFunction> benchmarks_map;
return benchmarks_map;
}
-static double gettimedouble(void) {
- struct timeval tv;
- gettimeofday(&tv, nullptr);
- return tv.tv_usec * 0.000001 + tv.tv_sec;
-}
-
benchmark::BenchRunner::BenchRunner(std::string name, benchmark::BenchFunction func)
{
benchmarks().insert(std::make_pair(name, func));
}
void
-benchmark::BenchRunner::RunAll(double elapsedTimeForOne)
+benchmark::BenchRunner::RunAll(benchmark::duration elapsedTimeForOne)
{
perf_init();
- std::cout << "#Benchmark" << "," << "count" << "," << "min" << "," << "max" << "," << "average" << ","
+ if (std::ratio_less_equal<benchmark::clock::period, std::micro>::value) {
+ std::cerr << "WARNING: Clock precision is worse than microsecond - benchmarks may be less accurate!\n";
+ }
+ std::cout << "#Benchmark" << "," << "count" << "," << "min(ns)" << "," << "max(ns)" << "," << "average(ns)" << ","
<< "min_cycles" << "," << "max_cycles" << "," << "average_cycles" << "\n";
for (const auto &p: benchmarks()) {
@@ -46,22 +42,23 @@ bool benchmark::State::KeepRunning()
++count;
return true;
}
- double now;
+ time_point now;
+
uint64_t nowCycles;
if (count == 0) {
- lastTime = beginTime = now = gettimedouble();
+ lastTime = beginTime = now = clock::now();
lastCycles = beginCycles = nowCycles = perf_cpucycles();
}
else {
- now = gettimedouble();
- double elapsed = now - lastTime;
- double elapsedOne = elapsed * countMaskInv;
+ now = clock::now();
+ auto elapsed = now - lastTime;
+ auto elapsedOne = elapsed / (countMask + 1);
if (elapsedOne < minTime) minTime = elapsedOne;
if (elapsedOne > maxTime) maxTime = elapsedOne;
// We only use relative values, so don't have to handle 64-bit wrap-around specially
nowCycles = perf_cpucycles();
- uint64_t elapsedOneCycles = (nowCycles - lastCycles) * countMaskInv;
+ uint64_t elapsedOneCycles = (nowCycles - lastCycles) / (countMask + 1);
if (elapsedOneCycles < minCycles) minCycles = elapsedOneCycles;
if (elapsedOneCycles > maxCycles) maxCycles = elapsedOneCycles;
@@ -69,10 +66,9 @@ bool benchmark::State::KeepRunning()
// If the execution was much too fast (1/128th of maxElapsed), increase the count mask by 8x and restart timing.
// The restart avoids including the overhead of this code in the measurement.
countMask = ((countMask<<3)|7) & ((1LL<<60)-1);
- countMaskInv = 1./(countMask+1);
count = 0;
- minTime = std::numeric_limits<double>::max();
- maxTime = std::numeric_limits<double>::min();
+ minTime = duration::max();
+ maxTime = duration::zero();
minCycles = std::numeric_limits<uint64_t>::max();
maxCycles = std::numeric_limits<uint64_t>::min();
return true;
@@ -81,7 +77,6 @@ bool benchmark::State::KeepRunning()
uint64_t newCountMask = ((countMask<<1)|1) & ((1LL<<60)-1);
if ((count & newCountMask)==0) {
countMask = newCountMask;
- countMaskInv = 1./(countMask+1);
}
}
}
@@ -96,9 +91,13 @@ bool benchmark::State::KeepRunning()
assert(count != 0 && "count == 0 => (now == 0 && beginTime == 0) => return above");
// Output results
- double average = (now-beginTime)/count;
+ // Duration casts are only necessary here because hardware with sub-nanosecond clocks
+ // will lose precision.
+ int64_t min_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(minTime).count();
+ int64_t max_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(maxTime).count();
+ int64_t avg_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>((now-beginTime)/count).count();
int64_t averageCycles = (nowCycles-beginCycles)/count;
- std::cout << std::fixed << std::setprecision(15) << name << "," << count << "," << minTime << "," << maxTime << "," << average << ","
+ std::cout << std::fixed << std::setprecision(15) << name << "," << count << "," << min_elapsed << "," << max_elapsed << "," << avg_elapsed << ","
<< minCycles << "," << maxCycles << "," << averageCycles << "\n";
std::cout.copyfmt(std::ios(nullptr));