aboutsummaryrefslogtreecommitdiff
path: root/qa/rpc-tests
diff options
context:
space:
mode:
Diffstat (limited to 'qa/rpc-tests')
-rwxr-xr-xqa/rpc-tests/p2p-segwit.py1646
-rw-r--r--qa/rpc-tests/test_framework/blocktools.py25
-rwxr-xr-xqa/rpc-tests/test_framework/mininode.py212
-rw-r--r--qa/rpc-tests/test_framework/script.py52
4 files changed, 1908 insertions, 27 deletions
diff --git a/qa/rpc-tests/p2p-segwit.py b/qa/rpc-tests/p2p-segwit.py
new file mode 100755
index 0000000000..cf78954f28
--- /dev/null
+++ b/qa/rpc-tests/p2p-segwit.py
@@ -0,0 +1,1646 @@
+#!/usr/bin/env python3
+# Copyright (c) 2016 The Bitcoin Core developers
+# Distributed under the MIT software license, see the accompanying
+# file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+from test_framework.mininode import *
+from test_framework.test_framework import BitcoinTestFramework
+from test_framework.util import *
+from test_framework.script import *
+from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment, WITNESS_COMMITMENT_HEADER
+from test_framework.key import CECKey, CPubKey
+import time
+import random
+from binascii import hexlify
+
+# The versionbit bit used to signal activation of SegWit
+VB_WITNESS_BIT = 1
+VB_PERIOD = 144
+VB_ACTIVATION_THRESHOLD = 108
+VB_TOP_BITS = 0x20000000
+
+MAX_SIGOP_COST = 80000
+
+'''
+SegWit p2p test.
+'''
+
+# Calculate the virtual size of a witness block:
+# (base + witness/4)
+def get_virtual_size(witness_block):
+ base_size = len(witness_block.serialize())
+ total_size = len(witness_block.serialize(with_witness=True))
+ # the "+3" is so we round up
+ vsize = int((3*base_size + total_size + 3)/4)
+ return vsize
+
+# Note: we can reduce code by using SingleNodeConnCB (in master, not 0.12)
+class TestNode(NodeConnCB):
+ def __init__(self):
+ NodeConnCB.__init__(self)
+ self.connection = None
+ self.ping_counter = 1
+ self.last_pong = msg_pong(0)
+ self.sleep_time = 0.05
+ self.getdataset = set()
+
+ def add_connection(self, conn):
+ self.connection = conn
+
+ # Wrapper for the NodeConn's send_message function
+ def send_message(self, message):
+ self.connection.send_message(message)
+
+ def on_inv(self, conn, message):
+ self.last_inv = message
+
+ def on_block(self, conn, message):
+ self.last_block = message.block
+ self.last_block.calc_sha256()
+
+ def on_getdata(self, conn, message):
+ for inv in message.inv:
+ self.getdataset.add(inv.hash)
+ self.last_getdata = message
+
+ def on_pong(self, conn, message):
+ self.last_pong = message
+
+ def on_reject(self, conn, message):
+ self.last_reject = message
+ #print message
+
+ # Syncing helpers
+ def sync(self, test_function, timeout=60):
+ while timeout > 0:
+ with mininode_lock:
+ if test_function():
+ return
+ time.sleep(self.sleep_time)
+ timeout -= self.sleep_time
+ raise AssertionError("Sync failed to complete")
+
+ def sync_with_ping(self, timeout=60):
+ self.send_message(msg_ping(nonce=self.ping_counter))
+ test_function = lambda: self.last_pong.nonce == self.ping_counter
+ self.sync(test_function, timeout)
+ self.ping_counter += 1
+ return
+
+ def wait_for_block(self, blockhash, timeout=60):
+ test_function = lambda: self.last_block != None and self.last_block.sha256 == blockhash
+ self.sync(test_function, timeout)
+ return
+
+ def wait_for_getdata(self, timeout=60):
+ test_function = lambda: self.last_getdata != None
+ self.sync(test_function, timeout)
+
+ def wait_for_inv(self, expected_inv, timeout=60):
+ test_function = lambda: self.last_inv != expected_inv
+ self.sync(test_function, timeout)
+
+ def announce_tx_and_wait_for_getdata(self, tx, timeout=60):
+ with mininode_lock:
+ self.last_getdata = None
+ self.send_message(msg_inv(inv=[CInv(1, tx.sha256)]))
+ self.wait_for_getdata(timeout)
+ return
+
+ def announce_block_and_wait_for_getdata(self, block, use_header, timeout=60):
+ with mininode_lock:
+ self.last_getdata = None
+ if use_header:
+ msg = msg_headers()
+ msg.headers = [ CBlockHeader(block) ]
+ self.send_message(msg)
+ else:
+ self.send_message(msg_inv(inv=[CInv(2, block.sha256)]))
+ self.wait_for_getdata()
+ return
+
+ def announce_block(self, block, use_header):
+ with mininode_lock:
+ self.last_getdata = None
+ if use_header:
+ msg = msg_headers()
+ msg.headers = [ CBlockHeader(block) ]
+ self.send_message(msg)
+ else:
+ self.send_message(msg_inv(inv=[CInv(2, block.sha256)]))
+
+ def request_block(self, blockhash, inv_type, timeout=60):
+ with mininode_lock:
+ self.last_block = None
+ self.send_message(msg_getdata(inv=[CInv(inv_type, blockhash)]))
+ self.wait_for_block(blockhash, timeout)
+ return self.last_block
+
+ def test_transaction_acceptance(self, tx, with_witness, accepted):
+ tx_message = msg_tx(tx)
+ if with_witness:
+ tx_message = msg_witness_tx(tx)
+ self.send_message(tx_message)
+ self.sync_with_ping()
+ assert_equal(tx.hash in self.connection.rpc.getrawmempool(), accepted)
+
+ # Test whether a witness block had the correct effect on the tip
+ def test_witness_block(self, block, accepted, with_witness=True):
+ if with_witness:
+ self.send_message(msg_witness_block(block))
+ else:
+ self.send_message(msg_block(block))
+ self.sync_with_ping()
+ assert_equal(self.connection.rpc.getbestblockhash() == block.hash, accepted)
+
+
+# Used to keep track of anyone-can-spend outputs that we can use in the tests
+class UTXO(object):
+ def __init__(self, sha256, n, nValue):
+ self.sha256 = sha256
+ self.n = n
+ self.nValue = nValue
+
+
+class SegWitTest(BitcoinTestFramework):
+ def setup_chain(self):
+ initialize_chain_clean(self.options.tmpdir, 3)
+
+ def add_options(self, parser):
+ parser.add_option("--oldbinary", dest="oldbinary",
+ default=None,
+ help="pre-segwit bitcoind binary for upgrade testing")
+
+ def setup_network(self):
+ self.nodes = []
+ self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-logtimemicros=1", "-whitelist=127.0.0.1"]))
+ # Start a node for testing IsStandard rules.
+ self.nodes.append(start_node(1, self.options.tmpdir, ["-debug", "-logtimemicros=1", "-whitelist=127.0.0.1", "-acceptnonstdtxn=0"]))
+ connect_nodes(self.nodes[0], 1)
+
+ # If an old bitcoind is given, do the upgrade-after-activation test.
+ self.test_upgrade = False
+ if (self.options.oldbinary != None):
+ self.nodes.append(start_node(2, self.options.tmpdir, ["-debug", "-whitelist=127.0.0.1"], binary=self.options.oldbinary))
+ connect_nodes(self.nodes[0], 2)
+ self.test_upgrade = True
+
+ ''' Helpers '''
+ # Build a block on top of node0's tip.
+ def build_next_block(self, nVersion=4):
+ tip = self.nodes[0].getbestblockhash()
+ height = self.nodes[0].getblockcount() + 1
+ block_time = self.nodes[0].getblockheader(tip)["mediantime"] + 1
+ block = create_block(int(tip, 16), create_coinbase(height), block_time)
+ block.nVersion = nVersion
+ block.rehash()
+ return block
+
+ # Adds list of transactions to block, adds witness commitment, then solves.
+ def update_witness_block_with_transactions(self, block, tx_list, nonce=0):
+ block.vtx.extend(tx_list)
+ add_witness_commitment(block, nonce)
+ block.solve()
+ return
+
+ ''' Individual tests '''
+ def test_witness_services(self):
+ print("\tVerifying NODE_WITNESS service bit")
+ assert((self.test_node.connection.nServices & NODE_WITNESS) != 0)
+
+
+ # See if sending a regular transaction works, and create a utxo
+ # to use in later tests.
+ def test_non_witness_transaction(self):
+ # Mine a block with an anyone-can-spend coinbase,
+ # let it mature, then try to spend it.
+ print("\tTesting non-witness transaction")
+ block = self.build_next_block(nVersion=1)
+ block.solve()
+ self.test_node.send_message(msg_block(block))
+ self.test_node.sync_with_ping() # make sure the block was processed
+ txid = block.vtx[0].sha256
+
+ self.nodes[0].generate(99) # let the block mature
+
+ # Create a transaction that spends the coinbase
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(txid, 0), b""))
+ tx.vout.append(CTxOut(49*100000000, CScript([OP_TRUE])))
+ tx.calc_sha256()
+
+ # Check that serializing it with or without witness is the same
+ # This is a sanity check of our testing framework.
+ assert_equal(msg_tx(tx).serialize(), msg_witness_tx(tx).serialize())
+
+ self.test_node.send_message(msg_witness_tx(tx))
+ self.test_node.sync_with_ping() # make sure the tx was processed
+ assert(tx.hash in self.nodes[0].getrawmempool())
+ # Save this transaction for later
+ self.utxo.append(UTXO(tx.sha256, 0, 49*100000000))
+ self.nodes[0].generate(1)
+
+
+ # Verify that blocks with witnesses are rejected before activation.
+ def test_unnecessary_witness_before_segwit_activation(self):
+ print("\tTesting behavior of unnecessary witnesses")
+ # For now, rely on earlier tests to have created at least one utxo for
+ # us to use
+ assert(len(self.utxo) > 0)
+ assert(get_bip9_status(self.nodes[0], 'segwit')['status'] != 'active')
+
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE])))
+ tx.wit.vtxinwit.append(CTxinWitness())
+ tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)])]
+
+ # Verify the hash with witness differs from the txid
+ # (otherwise our testing framework must be broken!)
+ tx.rehash()
+ assert(tx.sha256 != tx.calc_sha256(with_witness=True))
+
+ # Construct a segwit-signaling block that includes the transaction.
+ block = self.build_next_block(nVersion=(VB_TOP_BITS|(1 << VB_WITNESS_BIT)))
+ self.update_witness_block_with_transactions(block, [tx])
+ # Sending witness data before activation is not allowed (anti-spam
+ # rule).
+ self.test_node.test_witness_block(block, accepted=False)
+ # TODO: fix synchronization so we can test reject reason
+ # Right now, bitcoind delays sending reject messages for blocks
+ # until the future, making synchronization here difficult.
+ #assert_equal(self.test_node.last_reject.reason, "unexpected-witness")
+
+ # But it should not be permanently marked bad...
+ # Resend without witness information.
+ self.test_node.send_message(msg_block(block))
+ self.test_node.sync_with_ping()
+ assert_equal(self.nodes[0].getbestblockhash(), block.hash)
+
+ # Update our utxo list; we spent the first entry.
+ self.utxo.pop(0)
+ self.utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue))
+
+
+ # Mine enough blocks for segwit's vb state to be 'started'.
+ def advance_to_segwit_started(self):
+ height = self.nodes[0].getblockcount()
+ # Will need to rewrite the tests here if we are past the first period
+ assert(height < VB_PERIOD - 1)
+ # Genesis block is 'defined'.
+ assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'defined')
+ # Advance to end of period, status should now be 'started'
+ self.nodes[0].generate(VB_PERIOD-height-1)
+ assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started')
+
+ # Mine enough blocks to lock in segwit, but don't activate.
+ # TODO: we could verify that lockin only happens at the right threshold of
+ # signalling blocks, rather than just at the right period boundary.
+ def advance_to_segwit_lockin(self):
+ height = self.nodes[0].getblockcount()
+ assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started')
+ # Advance to end of period, and verify lock-in happens at the end
+ self.nodes[0].generate(VB_PERIOD-1)
+ height = self.nodes[0].getblockcount()
+ assert((height % VB_PERIOD) == VB_PERIOD - 2)
+ assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started')
+ self.nodes[0].generate(1)
+ assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in')
+
+
+ # Mine enough blocks to activate segwit.
+ # TODO: we could verify that activation only happens at the right threshold
+ # of signalling blocks, rather than just at the right period boundary.
+ def advance_to_segwit_active(self):
+ assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in')
+ height = self.nodes[0].getblockcount()
+ self.nodes[0].generate(VB_PERIOD - (height%VB_PERIOD) - 2)
+ assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in')
+ self.nodes[0].generate(1)
+ assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'active')
+
+
+ # This test can only be run after segwit has activated
+ def test_witness_commitments(self):
+ print("\tTesting witness commitments")
+
+ # First try a correct witness commitment.
+ block = self.build_next_block()
+ add_witness_commitment(block)
+ block.solve()
+
+ # Test the test -- witness serialization should be different
+ assert(msg_witness_block(block).serialize() != msg_block(block).serialize())
+
+ # This empty block should be valid.
+ self.test_node.test_witness_block(block, accepted=True)
+
+ # Try to tweak the nonce
+ block_2 = self.build_next_block()
+ add_witness_commitment(block_2, nonce=28)
+ block_2.solve()
+
+ # The commitment should have changed!
+ assert(block_2.vtx[0].vout[-1] != block.vtx[0].vout[-1])
+
+ # This should also be valid.
+ self.test_node.test_witness_block(block_2, accepted=True)
+
+ # Now test commitments with actual transactions
+ assert (len(self.utxo) > 0)
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+
+ # Let's construct a witness program
+ witness_program = CScript([OP_TRUE])
+ witness_hash = sha256(witness_program)
+ scriptPubKey = CScript([OP_0, witness_hash])
+ tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
+ tx.rehash()
+
+ # tx2 will spend tx1, and send back to a regular anyone-can-spend address
+ tx2 = CTransaction()
+ tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
+ tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program))
+ tx2.wit.vtxinwit.append(CTxinWitness())
+ tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program]
+ tx2.rehash()
+
+ block_3 = self.build_next_block()
+ self.update_witness_block_with_transactions(block_3, [tx, tx2], nonce=1)
+ # Add an extra OP_RETURN output that matches the witness commitment template,
+ # even though it has extra data after the incorrect commitment.
+ # This block should fail.
+ block_3.vtx[0].vout.append(CTxOut(0, CScript([OP_RETURN, WITNESS_COMMITMENT_HEADER + ser_uint256(2), 10])))
+ block_3.vtx[0].rehash()
+ block_3.hashMerkleRoot = block_3.calc_merkle_root()
+ block_3.rehash()
+ block_3.solve()
+
+ self.test_node.test_witness_block(block_3, accepted=False)
+
+ # Add a different commitment with different nonce, but in the
+ # right location, and with some funds burned(!).
+ # This should succeed (nValue shouldn't affect finding the
+ # witness commitment).
+ add_witness_commitment(block_3, nonce=0)
+ block_3.vtx[0].vout[0].nValue -= 1
+ block_3.vtx[0].vout[-1].nValue += 1
+ block_3.vtx[0].rehash()
+ block_3.hashMerkleRoot = block_3.calc_merkle_root()
+ block_3.rehash()
+ assert(len(block_3.vtx[0].vout) == 4) # 3 OP_returns
+ block_3.solve()
+ self.test_node.test_witness_block(block_3, accepted=True)
+
+ # Finally test that a block with no witness transactions can
+ # omit the commitment.
+ block_4 = self.build_next_block()
+ tx3 = CTransaction()
+ tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b""))
+ tx3.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program))
+ tx3.rehash()
+ block_4.vtx.append(tx3)
+ block_4.hashMerkleRoot = block_4.calc_merkle_root()
+ block_4.solve()
+ self.test_node.test_witness_block(block_4, with_witness=False, accepted=True)
+
+ # Update available utxo's for use in later test.
+ self.utxo.pop(0)
+ self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
+
+
+ def test_block_malleability(self):
+ print("\tTesting witness block malleability")
+
+ # Make sure that a block that has too big a virtual size
+ # because of a too-large coinbase witness is not permanently
+ # marked bad.
+ block = self.build_next_block()
+ add_witness_commitment(block)
+ block.solve()
+
+ block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.append(b'a'*5000000)
+ assert(get_virtual_size(block) > MAX_BLOCK_SIZE)
+
+ # We can't send over the p2p network, because this is too big to relay
+ # TODO: repeat this test with a block that can be relayed
+ self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
+
+ assert(self.nodes[0].getbestblockhash() != block.hash)
+
+ block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.pop()
+ assert(get_virtual_size(block) < MAX_BLOCK_SIZE)
+ self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
+
+ assert(self.nodes[0].getbestblockhash() == block.hash)
+
+ # Now make sure that malleating the witness nonce doesn't
+ # result in a block permanently marked bad.
+ block = self.build_next_block()
+ add_witness_commitment(block)
+ block.solve()
+
+ # Change the nonce -- should not cause the block to be permanently
+ # failed
+ block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(1) ]
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Changing the witness nonce doesn't change the block hash
+ block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(0) ]
+ self.test_node.test_witness_block(block, accepted=True)
+
+
+ def test_witness_block_size(self):
+ print("\tTesting witness block size limit")
+ # TODO: Test that non-witness carrying blocks can't exceed 1MB
+ # Skipping this test for now; this is covered in p2p-fullblocktest.py
+
+ # Test that witness-bearing blocks are limited at ceil(base + wit/4) <= 1MB.
+ block = self.build_next_block()
+
+ assert(len(self.utxo) > 0)
+
+ # Create a P2WSH transaction.
+ # The witness program will be a bunch of OP_2DROP's, followed by OP_TRUE.
+ # This should give us plenty of room to tweak the spending tx's
+ # virtual size.
+ NUM_DROPS = 200 # 201 max ops per script!
+ NUM_OUTPUTS = 50
+
+ witness_program = CScript([OP_2DROP]*NUM_DROPS + [OP_TRUE])
+ witness_hash = uint256_from_str(sha256(witness_program))
+ scriptPubKey = CScript([OP_0, ser_uint256(witness_hash)])
+
+ prevout = COutPoint(self.utxo[0].sha256, self.utxo[0].n)
+ value = self.utxo[0].nValue
+
+ parent_tx = CTransaction()
+ parent_tx.vin.append(CTxIn(prevout, b""))
+ child_value = int(value/NUM_OUTPUTS)
+ for i in range(NUM_OUTPUTS):
+ parent_tx.vout.append(CTxOut(child_value, scriptPubKey))
+ parent_tx.vout[0].nValue -= 50000
+ assert(parent_tx.vout[0].nValue > 0)
+ parent_tx.rehash()
+
+ child_tx = CTransaction()
+ for i in range(NUM_OUTPUTS):
+ child_tx.vin.append(CTxIn(COutPoint(parent_tx.sha256, i), b""))
+ child_tx.vout = [CTxOut(value - 100000, CScript([OP_TRUE]))]
+ for i in range(NUM_OUTPUTS):
+ child_tx.wit.vtxinwit.append(CTxinWitness())
+ child_tx.wit.vtxinwit[-1].scriptWitness.stack = [b'a'*195]*(2*NUM_DROPS) + [witness_program]
+ child_tx.rehash()
+ self.update_witness_block_with_transactions(block, [parent_tx, child_tx])
+
+ vsize = get_virtual_size(block)
+ additional_bytes = (MAX_BLOCK_SIZE - vsize)*4
+ i = 0
+ while additional_bytes > 0:
+ # Add some more bytes to each input until we hit MAX_BLOCK_SIZE+1
+ extra_bytes = min(additional_bytes+1, 55)
+ block.vtx[-1].wit.vtxinwit[int(i/(2*NUM_DROPS))].scriptWitness.stack[i%(2*NUM_DROPS)] = b'a'*(195+extra_bytes)
+ additional_bytes -= extra_bytes
+ i += 1
+
+ block.vtx[0].vout.pop() # Remove old commitment
+ add_witness_commitment(block)
+ block.solve()
+ vsize = get_virtual_size(block)
+ assert_equal(vsize, MAX_BLOCK_SIZE + 1)
+ # Make sure that our test case would exceed the old max-network-message
+ # limit
+ assert(len(block.serialize(True)) > 2*1024*1024)
+
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Now resize the second transaction to make the block fit.
+ cur_length = len(block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0])
+ block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(cur_length-1)
+ block.vtx[0].vout.pop()
+ add_witness_commitment(block)
+ block.solve()
+ assert(get_virtual_size(block) == MAX_BLOCK_SIZE)
+
+ self.test_node.test_witness_block(block, accepted=True)
+
+ # Update available utxo's
+ self.utxo.pop(0)
+ self.utxo.append(UTXO(block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue))
+
+
+ # submitblock will try to add the nonce automatically, so that mining
+ # software doesn't need to worry about doing so itself.
+ def test_submit_block(self):
+ block = self.build_next_block()
+
+ # Try using a custom nonce and then don't supply it.
+ # This shouldn't possibly work.
+ add_witness_commitment(block, nonce=1)
+ block.vtx[0].wit = CTxWitness() # drop the nonce
+ block.solve()
+ self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
+ assert(self.nodes[0].getbestblockhash() != block.hash)
+
+ # Now redo commitment with the standard nonce, but let bitcoind fill it in.
+ add_witness_commitment(block, nonce=0)
+ block.vtx[0].wit = CTxWitness()
+ block.solve()
+ self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
+ assert_equal(self.nodes[0].getbestblockhash(), block.hash)
+
+ # This time, add a tx with non-empty witness, but don't supply
+ # the commitment.
+ block_2 = self.build_next_block()
+
+ add_witness_commitment(block_2)
+
+ block_2.solve()
+
+ # Drop commitment and nonce -- submitblock should not fill in.
+ block_2.vtx[0].vout.pop()
+ block_2.vtx[0].wit = CTxWitness()
+
+ self.nodes[0].submitblock(bytes_to_hex_str(block_2.serialize(True)))
+ # Tip should not advance!
+ assert(self.nodes[0].getbestblockhash() != block_2.hash)
+
+
+ # Consensus tests of extra witness data in a transaction.
+ def test_extra_witness_data(self):
+ print("\tTesting extra witness data in tx")
+
+ assert(len(self.utxo) > 0)
+
+ block = self.build_next_block()
+
+ witness_program = CScript([OP_DROP, OP_TRUE])
+ witness_hash = sha256(witness_program)
+ scriptPubKey = CScript([OP_0, witness_hash])
+
+ # First try extra witness data on a tx that doesn't require a witness
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ tx.vout.append(CTxOut(self.utxo[0].nValue-2000, scriptPubKey))
+ tx.vout.append(CTxOut(1000, CScript([OP_TRUE]))) # non-witness output
+ tx.wit.vtxinwit.append(CTxinWitness())
+ tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([])]
+ tx.rehash()
+ self.update_witness_block_with_transactions(block, [tx])
+
+ # Extra witness data should not be allowed.
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Try extra signature data. Ok if we're not spending a witness output.
+ block.vtx[1].wit.vtxinwit = []
+ block.vtx[1].vin[0].scriptSig = CScript([OP_0])
+ block.vtx[1].rehash()
+ add_witness_commitment(block)
+ block.solve()
+
+ self.test_node.test_witness_block(block, accepted=True)
+
+ # Now try extra witness/signature data on an input that DOES require a
+ # witness
+ tx2 = CTransaction()
+ tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) # witness output
+ tx2.vin.append(CTxIn(COutPoint(tx.sha256, 1), b"")) # non-witness
+ tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE])))
+ tx2.wit.vtxinwit.extend([CTxinWitness(), CTxinWitness()])
+ tx2.wit.vtxinwit[0].scriptWitness.stack = [ CScript([CScriptNum(1)]), CScript([CScriptNum(1)]), witness_program ]
+ tx2.wit.vtxinwit[1].scriptWitness.stack = [ CScript([OP_TRUE]) ]
+
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [tx2])
+
+ # This has extra witness data, so it should fail.
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Now get rid of the extra witness, but add extra scriptSig data
+ tx2.vin[0].scriptSig = CScript([OP_TRUE])
+ tx2.vin[1].scriptSig = CScript([OP_TRUE])
+ tx2.wit.vtxinwit[0].scriptWitness.stack.pop(0)
+ tx2.wit.vtxinwit[1].scriptWitness.stack = []
+ tx2.rehash()
+ add_witness_commitment(block)
+ block.solve()
+
+ # This has extra signature data for a witness input, so it should fail.
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Now get rid of the extra scriptsig on the witness input, and verify
+ # success (even with extra scriptsig data in the non-witness input)
+ tx2.vin[0].scriptSig = b""
+ tx2.rehash()
+ add_witness_commitment(block)
+ block.solve()
+
+ self.test_node.test_witness_block(block, accepted=True)
+
+ # Update utxo for later tests
+ self.utxo.pop(0)
+ self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
+
+
+ def test_max_witness_push_length(self):
+ ''' Should only allow up to 520 byte pushes in witness stack '''
+ print("\tTesting maximum witness push size")
+ MAX_SCRIPT_ELEMENT_SIZE = 520
+ assert(len(self.utxo))
+
+ block = self.build_next_block()
+
+ witness_program = CScript([OP_DROP, OP_TRUE])
+ witness_hash = sha256(witness_program)
+ scriptPubKey = CScript([OP_0, witness_hash])
+
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
+ tx.rehash()
+
+ tx2 = CTransaction()
+ tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
+ tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE])))
+ tx2.wit.vtxinwit.append(CTxinWitness())
+ # First try a 521-byte stack element
+ tx2.wit.vtxinwit[0].scriptWitness.stack = [ b'a'*(MAX_SCRIPT_ELEMENT_SIZE+1), witness_program ]
+ tx2.rehash()
+
+ self.update_witness_block_with_transactions(block, [tx, tx2])
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Now reduce the length of the stack element
+ tx2.wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(MAX_SCRIPT_ELEMENT_SIZE)
+
+ add_witness_commitment(block)
+ block.solve()
+ self.test_node.test_witness_block(block, accepted=True)
+
+ # Update the utxo for later tests
+ self.utxo.pop()
+ self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
+
+ def test_max_witness_program_length(self):
+ # Can create witness outputs that are long, but can't be greater than
+ # 10k bytes to successfully spend
+ print("\tTesting maximum witness program length")
+ assert(len(self.utxo))
+ MAX_PROGRAM_LENGTH = 10000
+
+ # This program is 19 max pushes (9937 bytes), then 64 more opcode-bytes.
+ long_witness_program = CScript([b'a'*520]*19 + [OP_DROP]*63 + [OP_TRUE])
+ assert(len(long_witness_program) == MAX_PROGRAM_LENGTH+1)
+ long_witness_hash = sha256(long_witness_program)
+ long_scriptPubKey = CScript([OP_0, long_witness_hash])
+
+ block = self.build_next_block()
+
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ tx.vout.append(CTxOut(self.utxo[0].nValue-1000, long_scriptPubKey))
+ tx.rehash()
+
+ tx2 = CTransaction()
+ tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
+ tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE])))
+ tx2.wit.vtxinwit.append(CTxinWitness())
+ tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*44 + [long_witness_program]
+ tx2.rehash()
+
+ self.update_witness_block_with_transactions(block, [tx, tx2])
+
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Try again with one less byte in the witness program
+ witness_program = CScript([b'a'*520]*19 + [OP_DROP]*62 + [OP_TRUE])
+ assert(len(witness_program) == MAX_PROGRAM_LENGTH)
+ witness_hash = sha256(witness_program)
+ scriptPubKey = CScript([OP_0, witness_hash])
+
+ tx.vout[0] = CTxOut(tx.vout[0].nValue, scriptPubKey)
+ tx.rehash()
+ tx2.vin[0].prevout.hash = tx.sha256
+ tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*43 + [witness_program]
+ tx2.rehash()
+ block.vtx = [block.vtx[0]]
+ self.update_witness_block_with_transactions(block, [tx, tx2])
+ self.test_node.test_witness_block(block, accepted=True)
+
+ self.utxo.pop()
+ self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
+
+
+ def test_witness_input_length(self):
+ ''' Ensure that vin length must match vtxinwit length '''
+ print("\tTesting witness input length")
+ assert(len(self.utxo))
+
+ witness_program = CScript([OP_DROP, OP_TRUE])
+ witness_hash = sha256(witness_program)
+ scriptPubKey = CScript([OP_0, witness_hash])
+
+ # Create a transaction that splits our utxo into many outputs
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ nValue = self.utxo[0].nValue
+ for i in range(10):
+ tx.vout.append(CTxOut(int(nValue/10), scriptPubKey))
+ tx.vout[0].nValue -= 1000
+ assert(tx.vout[0].nValue >= 0)
+
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [tx])
+ self.test_node.test_witness_block(block, accepted=True)
+
+ # Try various ways to spend tx that should all break.
+ # This "broken" transaction serializer will not normalize
+ # the length of vtxinwit.
+ class BrokenCTransaction(CTransaction):
+ def serialize_with_witness(self):
+ flags = 0
+ if not self.wit.is_null():
+ flags |= 1
+ r = b""
+ r += struct.pack("<i", self.nVersion)
+ if flags:
+ dummy = []
+ r += ser_vector(dummy)
+ r += struct.pack("<B", flags)
+ r += ser_vector(self.vin)
+ r += ser_vector(self.vout)
+ if flags & 1:
+ r += self.wit.serialize()
+ r += struct.pack("<I", self.nLockTime)
+ return r
+
+ tx2 = BrokenCTransaction()
+ for i in range(10):
+ tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b""))
+ tx2.vout.append(CTxOut(nValue-3000, CScript([OP_TRUE])))
+
+ # First try using a too long vtxinwit
+ for i in range(11):
+ tx2.wit.vtxinwit.append(CTxinWitness())
+ tx2.wit.vtxinwit[i].scriptWitness.stack = [b'a', witness_program]
+
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [tx2])
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Now try using a too short vtxinwit
+ tx2.wit.vtxinwit.pop()
+ tx2.wit.vtxinwit.pop()
+
+ block.vtx = [block.vtx[0]]
+ self.update_witness_block_with_transactions(block, [tx2])
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Now make one of the intermediate witnesses be incorrect
+ tx2.wit.vtxinwit.append(CTxinWitness())
+ tx2.wit.vtxinwit[-1].scriptWitness.stack = [b'a', witness_program]
+ tx2.wit.vtxinwit[5].scriptWitness.stack = [ witness_program ]
+
+ block.vtx = [block.vtx[0]]
+ self.update_witness_block_with_transactions(block, [tx2])
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Fix the broken witness and the block should be accepted.
+ tx2.wit.vtxinwit[5].scriptWitness.stack = [b'a', witness_program]
+ block.vtx = [block.vtx[0]]
+ self.update_witness_block_with_transactions(block, [tx2])
+ self.test_node.test_witness_block(block, accepted=True)
+
+ self.utxo.pop()
+ self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
+
+
+ def test_witness_tx_relay_before_segwit_activation(self):
+ print("\tTesting relay of witness transactions")
+ # Generate a transaction that doesn't require a witness, but send it
+ # with a witness. Should be rejected for premature-witness, but should
+ # not be added to recently rejected list.
+ assert(len(self.utxo))
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE])))
+ tx.wit.vtxinwit.append(CTxinWitness())
+ tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ]
+ tx.rehash()
+
+ tx_hash = tx.sha256
+ tx_value = tx.vout[0].nValue
+
+ # Verify that if a peer doesn't set nServices to include NODE_WITNESS,
+ # the getdata is just for the non-witness portion.
+ self.old_node.announce_tx_and_wait_for_getdata(tx)
+ assert(self.old_node.last_getdata.inv[0].type == 1)
+
+ # Since we haven't delivered the tx yet, inv'ing the same tx from
+ # a witness transaction ought not result in a getdata.
+ try:
+ self.test_node.announce_tx_and_wait_for_getdata(tx, timeout=2)
+ print("Error: duplicate tx getdata!")
+ assert(False)
+ except AssertionError as e:
+ pass
+
+ # Delivering this transaction with witness should fail (no matter who
+ # its from)
+ assert_equal(len(self.nodes[0].getrawmempool()), 0)
+ assert_equal(len(self.nodes[1].getrawmempool()), 0)
+ self.old_node.test_transaction_acceptance(tx, with_witness=True, accepted=False)
+ self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=False)
+
+ # But eliminating the witness should fix it
+ self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True)
+
+ # Verify that inv's to test_node come with getdata's for non-witness tx's
+ # Just tweak the transaction, announce it, and verify we get a getdata
+ # for a normal tx
+ tx.vout[0].scriptPubKey = CScript([OP_TRUE, OP_TRUE])
+ tx.rehash()
+ self.test_node.announce_tx_and_wait_for_getdata(tx)
+ assert(self.test_node.last_getdata.inv[0].type == 1)
+
+ # Cleanup: mine the first transaction and update utxo
+ self.nodes[0].generate(1)
+ assert_equal(len(self.nodes[0].getrawmempool()), 0)
+
+ self.utxo.pop(0)
+ self.utxo.append(UTXO(tx_hash, 0, tx_value))
+
+
+ # After segwit activates, verify that mempool:
+ # - rejects transactions with unnecessary/extra witnesses
+ # - accepts transactions with valid witnesses
+ # and that witness transactions are relayed to non-upgraded peers.
+ def test_tx_relay_after_segwit_activation(self):
+ print("\tTesting relay of witness transactions")
+ # Generate a transaction that doesn't require a witness, but send it
+ # with a witness. Should be rejected because we can't use a witness
+ # when spending a non-witness output.
+ assert(len(self.utxo))
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE])))
+ tx.wit.vtxinwit.append(CTxinWitness())
+ tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ]
+ tx.rehash()
+
+ tx_hash = tx.sha256
+ tx_value = tx.vout[0].nValue
+
+ # Verify that unnecessary witnesses are rejected.
+ self.test_node.announce_tx_and_wait_for_getdata(tx)
+ assert_equal(len(self.nodes[0].getrawmempool()), 0)
+ self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=False)
+
+ # Verify that removing the witness succeeds.
+ # Re-announcing won't result in a getdata for ~2.5 minutes, so just
+ # deliver the modified transaction.
+ self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True)
+
+ # Now try to add extra witness data to a valid witness tx.
+ witness_program = CScript([OP_TRUE])
+ witness_hash = sha256(witness_program)
+ scriptPubKey = CScript([OP_0, witness_hash])
+ tx2 = CTransaction()
+ tx2.vin.append(CTxIn(COutPoint(tx_hash, 0), b""))
+ tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptPubKey))
+ tx2.rehash()
+
+ tx3 = CTransaction()
+ tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b""))
+ tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, CScript([OP_TRUE])))
+ tx3.wit.vtxinwit.append(CTxinWitness())
+ tx3.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)]), witness_program ]
+ tx3.rehash()
+
+ self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True)
+ self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False)
+
+ # Get rid of the extra witness, and verify acceptance.
+ tx3.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ]
+ # Also check that old_node gets a tx announcement, even though this is
+ # a witness transaction.
+ self.old_node.wait_for_inv(CInv(1, tx2.sha256)) # wait until tx2 was inv'ed
+ self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True)
+ self.old_node.wait_for_inv(CInv(1, tx3.sha256))
+
+ # Test that getrawtransaction returns correct witness information
+ # hash, size, vsize
+ raw_tx = self.nodes[0].getrawtransaction(tx3.hash, 1)
+ assert_equal(int(raw_tx["hash"], 16), tx3.calc_sha256(True))
+ assert_equal(raw_tx["size"], len(tx3.serialize_with_witness()))
+ vsize = (len(tx3.serialize_with_witness()) + 3*len(tx3.serialize_without_witness()) + 3) / 4
+ assert_equal(raw_tx["vsize"], vsize)
+ assert_equal(len(raw_tx["vin"][0]["txinwitness"]), 1)
+ assert_equal(raw_tx["vin"][0]["txinwitness"][0], hexlify(witness_program).decode('ascii'))
+ assert(vsize != raw_tx["size"])
+
+ # Cleanup: mine the transactions and update utxo for next test
+ self.nodes[0].generate(1)
+ assert_equal(len(self.nodes[0].getrawmempool()), 0)
+
+ self.utxo.pop(0)
+ self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
+
+
+ # Test that block requests to NODE_WITNESS peer are with MSG_WITNESS_FLAG
+ # This is true regardless of segwit activation.
+ # Also test that we don't ask for blocks from unupgraded peers
+ def test_block_relay(self, segwit_activated):
+ print("\tTesting block relay")
+
+ blocktype = 2|MSG_WITNESS_FLAG if segwit_activated else 2
+
+ # test_node has set NODE_WITNESS, so all getdata requests should be for
+ # witness blocks.
+ # Test announcing a block via inv results in a getdata, and that
+ # announcing a version 4 or random VB block with a header results in a getdata
+ block1 = self.build_next_block()
+ block1.solve()
+
+ self.test_node.announce_block_and_wait_for_getdata(block1, use_header=False)
+ assert(self.test_node.last_getdata.inv[0].type == blocktype)
+ self.test_node.test_witness_block(block1, True)
+
+ block2 = self.build_next_block(nVersion=4)
+ block2.solve()
+
+ self.test_node.announce_block_and_wait_for_getdata(block2, use_header=True)
+ assert(self.test_node.last_getdata.inv[0].type == blocktype)
+ self.test_node.test_witness_block(block2, True)
+
+ block3 = self.build_next_block(nVersion=(VB_TOP_BITS | (1<<15)))
+ block3.solve()
+ self.test_node.announce_block_and_wait_for_getdata(block3, use_header=True)
+ assert(self.test_node.last_getdata.inv[0].type == blocktype)
+ self.test_node.test_witness_block(block3, True)
+
+ # Check that we can getdata for witness blocks or regular blocks,
+ # and the right thing happens.
+ if segwit_activated == False:
+ # Before activation, we should be able to request old blocks with
+ # or without witness, and they should be the same.
+ chain_height = self.nodes[0].getblockcount()
+ # Pick 10 random blocks on main chain, and verify that getdata's
+ # for MSG_BLOCK, MSG_WITNESS_BLOCK, and rpc getblock() are equal.
+ all_heights = list(range(chain_height+1))
+ random.shuffle(all_heights)
+ all_heights = all_heights[0:10]
+ for height in all_heights:
+ block_hash = self.nodes[0].getblockhash(height)
+ rpc_block = self.nodes[0].getblock(block_hash, False)
+ block_hash = int(block_hash, 16)
+ block = self.test_node.request_block(block_hash, 2)
+ wit_block = self.test_node.request_block(block_hash, 2|MSG_WITNESS_FLAG)
+ assert_equal(block.serialize(True), wit_block.serialize(True))
+ assert_equal(block.serialize(), hex_str_to_bytes(rpc_block))
+ else:
+ # After activation, witness blocks and non-witness blocks should
+ # be different. Verify rpc getblock() returns witness blocks, while
+ # getdata respects the requested type.
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [])
+ # This gives us a witness commitment.
+ assert(len(block.vtx[0].wit.vtxinwit) == 1)
+ assert(len(block.vtx[0].wit.vtxinwit[0].scriptWitness.stack) == 1)
+ self.test_node.test_witness_block(block, accepted=True)
+ # Now try to retrieve it...
+ rpc_block = self.nodes[0].getblock(block.hash, False)
+ non_wit_block = self.test_node.request_block(block.sha256, 2)
+ wit_block = self.test_node.request_block(block.sha256, 2|MSG_WITNESS_FLAG)
+ assert_equal(wit_block.serialize(True), hex_str_to_bytes(rpc_block))
+ assert_equal(wit_block.serialize(False), non_wit_block.serialize())
+ assert_equal(wit_block.serialize(True), block.serialize(True))
+
+ # Test size, vsize, cost
+ rpc_details = self.nodes[0].getblock(block.hash, True)
+ assert_equal(rpc_details["size"], len(block.serialize(True)))
+ assert_equal(rpc_details["strippedsize"], len(block.serialize(False)))
+ cost = 3*len(block.serialize(False)) + len(block.serialize(True))
+ assert_equal(rpc_details["cost"], cost)
+
+ # Upgraded node should not ask for blocks from unupgraded
+ block4 = self.build_next_block(nVersion=4)
+ block4.solve()
+ self.old_node.getdataset = set()
+ # Blocks can be requested via direct-fetch (immediately upon processing the announcement)
+ # or via parallel download (with an indeterminate delay from processing the announcement)
+ # so to test that a block is NOT requested, we could guess a time period to sleep for,
+ # and then check. We can avoid the sleep() by taking advantage of transaction getdata's
+ # being processed after block getdata's, and announce a transaction as well,
+ # and then check to see if that particular getdata has been received.
+ self.old_node.announce_block(block4, use_header=False)
+ self.old_node.announce_tx_and_wait_for_getdata(block4.vtx[0])
+ assert(block4.sha256 not in self.old_node.getdataset)
+
+ # Verify that future segwit upgraded transactions are non-standard,
+ # but valid in blocks. Can run this before and after segwit activation.
+ def test_segwit_versions(self):
+ print("\tTesting standardness/consensus for segwit versions (0-16)")
+ assert(len(self.utxo))
+ NUM_TESTS = 17 # will test OP_0, OP1, ..., OP_16
+ if (len(self.utxo) < NUM_TESTS):
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ split_value = (self.utxo[0].nValue - 4000) // NUM_TESTS
+ for i in range(NUM_TESTS):
+ tx.vout.append(CTxOut(split_value, CScript([OP_TRUE])))
+ tx.rehash()
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [tx])
+ self.test_node.test_witness_block(block, accepted=True)
+ self.utxo.pop(0)
+ for i in range(NUM_TESTS):
+ self.utxo.append(UTXO(tx.sha256, i, split_value))
+
+ sync_blocks(self.nodes)
+ temp_utxo = []
+ tx = CTransaction()
+ count = 0
+ witness_program = CScript([OP_TRUE])
+ witness_hash = sha256(witness_program)
+ assert_equal(len(self.nodes[1].getrawmempool()), 0)
+ for version in list(range(OP_1, OP_16+1)) + [OP_0]:
+ count += 1
+ # First try to spend to a future version segwit scriptPubKey.
+ scriptPubKey = CScript([CScriptOp(version), witness_hash])
+ tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")]
+ tx.vout = [CTxOut(self.utxo[0].nValue-1000, scriptPubKey)]
+ tx.rehash()
+ self.std_node.test_transaction_acceptance(tx, with_witness=True, accepted=False)
+ self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True)
+ self.utxo.pop(0)
+ temp_utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue))
+
+ self.nodes[0].generate(1) # Mine all the transactions
+ sync_blocks(self.nodes)
+ assert(len(self.nodes[0].getrawmempool()) == 0)
+
+ # Finally, verify that version 0 -> version 1 transactions
+ # are non-standard
+ scriptPubKey = CScript([CScriptOp(OP_1), witness_hash])
+ tx2 = CTransaction()
+ tx2.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")]
+ tx2.vout = [CTxOut(tx.vout[0].nValue-1000, scriptPubKey)]
+ tx2.wit.vtxinwit.append(CTxinWitness())
+ tx2.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ]
+ tx2.rehash()
+ # Gets accepted to test_node, because standardness of outputs isn't
+ # checked with fRequireStandard
+ self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True)
+ self.std_node.test_transaction_acceptance(tx2, with_witness=True, accepted=False)
+ temp_utxo.pop() # last entry in temp_utxo was the output we just spent
+ temp_utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
+
+ # Spend everything in temp_utxo back to an OP_TRUE output.
+ tx3 = CTransaction()
+ total_value = 0
+ for i in temp_utxo:
+ tx3.vin.append(CTxIn(COutPoint(i.sha256, i.n), b""))
+ tx3.wit.vtxinwit.append(CTxinWitness())
+ total_value += i.nValue
+ tx3.wit.vtxinwit[-1].scriptWitness.stack = [witness_program]
+ tx3.vout.append(CTxOut(total_value - 1000, CScript([OP_TRUE])))
+ tx3.rehash()
+ # Spending a higher version witness output is not allowed by policy,
+ # even with fRequireStandard=false.
+ self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False)
+ self.test_node.sync_with_ping()
+ with mininode_lock:
+ assert(b"reserved for soft-fork upgrades" in self.test_node.last_reject.reason)
+
+ # Building a block with the transaction must be valid, however.
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [tx2, tx3])
+ self.test_node.test_witness_block(block, accepted=True)
+ sync_blocks(self.nodes)
+
+ # Add utxo to our list
+ self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
+
+
+ def test_premature_coinbase_witness_spend(self):
+ print("\tTesting premature coinbase witness spend")
+ block = self.build_next_block()
+ # Change the output of the block to be a witness output.
+ witness_program = CScript([OP_TRUE])
+ witness_hash = sha256(witness_program)
+ scriptPubKey = CScript([OP_0, witness_hash])
+ block.vtx[0].vout[0].scriptPubKey = scriptPubKey
+ # This next line will rehash the coinbase and update the merkle
+ # root, and solve.
+ self.update_witness_block_with_transactions(block, [])
+ self.test_node.test_witness_block(block, accepted=True)
+
+ spend_tx = CTransaction()
+ spend_tx.vin = [CTxIn(COutPoint(block.vtx[0].sha256, 0), b"")]
+ spend_tx.vout = [CTxOut(block.vtx[0].vout[0].nValue, witness_program)]
+ spend_tx.wit.vtxinwit.append(CTxinWitness())
+ spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ]
+ spend_tx.rehash()
+
+ # Now test a premature spend.
+ self.nodes[0].generate(98)
+ sync_blocks(self.nodes)
+ block2 = self.build_next_block()
+ self.update_witness_block_with_transactions(block2, [spend_tx])
+ self.test_node.test_witness_block(block2, accepted=False)
+
+ # Advancing one more block should allow the spend.
+ self.nodes[0].generate(1)
+ block2 = self.build_next_block()
+ self.update_witness_block_with_transactions(block2, [spend_tx])
+ self.test_node.test_witness_block(block2, accepted=True)
+ sync_blocks(self.nodes)
+
+
+ def test_signature_version_1(self):
+ print("\tTesting segwit signature hash version 1")
+ key = CECKey()
+ key.set_secretbytes(b"9")
+ pubkey = CPubKey(key.get_pubkey())
+
+ witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)])
+ witness_hash = sha256(witness_program)
+ scriptPubKey = CScript([OP_0, witness_hash])
+
+ # First create a witness output for use in the tests.
+ assert(len(self.utxo))
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
+ tx.rehash()
+
+ self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True)
+ # Mine this transaction in preparation for following tests.
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [tx])
+ self.test_node.test_witness_block(block, accepted=True)
+ sync_blocks(self.nodes)
+ self.utxo.pop(0)
+
+ # Add signature for a P2PK witness program.
+ def sign_P2PK_witness_input(script, txTo, inIdx, hashtype, value, key):
+ tx_hash = SegwitVersion1SignatureHash(script, txTo, inIdx, hashtype, value)
+ signature = key.sign(tx_hash) + chr(hashtype).encode('latin-1')
+ txTo.wit.vtxinwit[inIdx].scriptWitness.stack = [signature, script]
+ txTo.rehash()
+
+ # Test each hashtype
+ prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue)
+ for sigflag in [ 0, SIGHASH_ANYONECANPAY ]:
+ for hashtype in [SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE]:
+ hashtype |= sigflag
+ block = self.build_next_block()
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b""))
+ tx.vout.append(CTxOut(prev_utxo.nValue - 1000, scriptPubKey))
+ tx.wit.vtxinwit.append(CTxinWitness())
+ # Too-large input value
+ sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue+1, key)
+ self.update_witness_block_with_transactions(block, [tx])
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Too-small input value
+ sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue-1, key)
+ block.vtx.pop() # remove last tx
+ self.update_witness_block_with_transactions(block, [tx])
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Now try correct value
+ sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue, key)
+ block.vtx.pop()
+ self.update_witness_block_with_transactions(block, [tx])
+ self.test_node.test_witness_block(block, accepted=True)
+
+ prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue)
+
+ # Test combinations of signature hashes.
+ # Split the utxo into a lot of outputs.
+ # Randomly choose up to 10 to spend, sign with different hashtypes, and
+ # output to a random number of outputs. Repeat NUM_TESTS times.
+ # Ensure that we've tested a situation where we use SIGHASH_SINGLE with
+ # an input index > number of outputs.
+ NUM_TESTS = 500
+ temp_utxos = []
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b""))
+ split_value = prev_utxo.nValue // NUM_TESTS
+ for i in range(NUM_TESTS):
+ tx.vout.append(CTxOut(split_value, scriptPubKey))
+ tx.wit.vtxinwit.append(CTxinWitness())
+ sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, prev_utxo.nValue, key)
+ for i in range(NUM_TESTS):
+ temp_utxos.append(UTXO(tx.sha256, i, split_value))
+
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [tx])
+ self.test_node.test_witness_block(block, accepted=True)
+
+ block = self.build_next_block()
+ used_sighash_single_out_of_bounds = False
+ for i in range(NUM_TESTS):
+ # Choose random number of inputs to use.
+ num_inputs = random.randint(1, 10)
+ # Create a slight bias for producing more utxos
+ num_outputs = random.randint(1, 11)
+ random.shuffle(temp_utxos)
+ assert(len(temp_utxos) > num_inputs)
+ tx = CTransaction()
+ total_value = 0
+ for i in range(num_inputs):
+ tx.vin.append(CTxIn(COutPoint(temp_utxos[i].sha256, temp_utxos[i].n), b""))
+ tx.wit.vtxinwit.append(CTxinWitness())
+ total_value += temp_utxos[i].nValue
+ split_value = total_value // num_outputs
+ for i in range(num_outputs):
+ tx.vout.append(CTxOut(split_value, scriptPubKey))
+ for i in range(num_inputs):
+ # Now try to sign each input, using a random hashtype.
+ anyonecanpay = 0
+ if random.randint(0, 1):
+ anyonecanpay = SIGHASH_ANYONECANPAY
+ hashtype = random.randint(1, 3) | anyonecanpay
+ sign_P2PK_witness_input(witness_program, tx, i, hashtype, temp_utxos[i].nValue, key)
+ if (hashtype == SIGHASH_SINGLE and i >= num_outputs):
+ used_sighash_single_out_of_bounds = True
+ tx.rehash()
+ for i in range(num_outputs):
+ temp_utxos.append(UTXO(tx.sha256, i, split_value))
+ temp_utxos = temp_utxos[num_inputs:]
+
+ block.vtx.append(tx)
+
+ # Test the block periodically, if we're close to maxblocksize
+ if (get_virtual_size(block) > MAX_BLOCK_SIZE - 1000):
+ self.update_witness_block_with_transactions(block, [])
+ self.test_node.test_witness_block(block, accepted=True)
+ block = self.build_next_block()
+
+ if (not used_sighash_single_out_of_bounds):
+ print("WARNING: this test run didn't attempt SIGHASH_SINGLE with out-of-bounds index value")
+ # Test the transactions we've added to the block
+ if (len(block.vtx) > 1):
+ self.update_witness_block_with_transactions(block, [])
+ self.test_node.test_witness_block(block, accepted=True)
+
+ # Now test witness version 0 P2PKH transactions
+ pubkeyhash = hash160(pubkey)
+ scriptPKH = CScript([OP_0, pubkeyhash])
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(temp_utxos[0].sha256, temp_utxos[0].n), b""))
+ tx.vout.append(CTxOut(temp_utxos[0].nValue, scriptPKH))
+ tx.wit.vtxinwit.append(CTxinWitness())
+ sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, temp_utxos[0].nValue, key)
+ tx2 = CTransaction()
+ tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
+ tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE])))
+
+ script = CScript([CScriptOp(OP_DUP), CScriptOp(OP_HASH160), pubkeyhash, CScriptOp(OP_EQUALVERIFY), CScriptOp(OP_CHECKSIG)])
+ sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue)
+ signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
+
+ # Check that we can't have a scriptSig
+ tx2.vin[0].scriptSig = CScript([signature, pubkey])
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [tx, tx2])
+ self.test_node.test_witness_block(block, accepted=False)
+
+ # Move the signature to the witness.
+ block.vtx.pop()
+ tx2.wit.vtxinwit.append(CTxinWitness())
+ tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey]
+ tx2.vin[0].scriptSig = b""
+ tx2.rehash()
+
+ self.update_witness_block_with_transactions(block, [tx2])
+ self.test_node.test_witness_block(block, accepted=True)
+
+ temp_utxos.pop(0)
+
+ # Update self.utxos for later tests. Just spend everything in
+ # temp_utxos to a corresponding entry in self.utxos
+ tx = CTransaction()
+ index = 0
+ for i in temp_utxos:
+ # Just spend to our usual anyone-can-spend output
+ # Use SIGHASH_SINGLE|SIGHASH_ANYONECANPAY so we can build up
+ # the signatures as we go.
+ tx.vin.append(CTxIn(COutPoint(i.sha256, i.n), b""))
+ tx.vout.append(CTxOut(i.nValue, CScript([OP_TRUE])))
+ tx.wit.vtxinwit.append(CTxinWitness())
+ sign_P2PK_witness_input(witness_program, tx, index, SIGHASH_SINGLE|SIGHASH_ANYONECANPAY, i.nValue, key)
+ index += 1
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [tx])
+ self.test_node.test_witness_block(block, accepted=True)
+
+ for i in range(len(tx.vout)):
+ self.utxo.append(UTXO(tx.sha256, i, tx.vout[i].nValue))
+
+
+ # Test P2SH wrapped witness programs.
+ def test_p2sh_witness(self, segwit_activated):
+ print("\tTesting P2SH witness transactions")
+
+ assert(len(self.utxo))
+
+ # Prepare the p2sh-wrapped witness output
+ witness_program = CScript([OP_DROP, OP_TRUE])
+ witness_hash = sha256(witness_program)
+ p2wsh_pubkey = CScript([OP_0, witness_hash])
+ p2sh_witness_hash = hash160(p2wsh_pubkey)
+ scriptPubKey = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL])
+ scriptSig = CScript([p2wsh_pubkey]) # a push of the redeem script
+
+ # Fund the P2SH output
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
+ tx.rehash()
+
+ # Verify mempool acceptance and block validity
+ self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True)
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [tx])
+ self.test_node.test_witness_block(block, accepted=True, with_witness=segwit_activated)
+ sync_blocks(self.nodes)
+
+ # Now test attempts to spend the output.
+ spend_tx = CTransaction()
+ spend_tx.vin.append(CTxIn(COutPoint(tx.sha256, 0), scriptSig))
+ spend_tx.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE])))
+ spend_tx.rehash()
+
+ # This transaction should not be accepted into the mempool pre- or
+ # post-segwit. Mempool acceptance will use SCRIPT_VERIFY_WITNESS which
+ # will require a witness to spend a witness program regardless of
+ # segwit activation. Note that older bitcoind's that are not
+ # segwit-aware would also reject this for failing CLEANSTACK.
+ self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False)
+
+ # Try to put the witness script in the scriptSig, should also fail.
+ spend_tx.vin[0].scriptSig = CScript([p2wsh_pubkey, b'a'])
+ spend_tx.rehash()
+ self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False)
+
+ # Now put the witness script in the witness, should succeed after
+ # segwit activates.
+ spend_tx.vin[0].scriptSig = scriptSig
+ spend_tx.rehash()
+ spend_tx.wit.vtxinwit.append(CTxinWitness())
+ spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a', witness_program ]
+
+ # Verify mempool acceptance
+ self.test_node.test_transaction_acceptance(spend_tx, with_witness=True, accepted=segwit_activated)
+ block = self.build_next_block()
+ self.update_witness_block_with_transactions(block, [spend_tx])
+
+ # If we're before activation, then sending this without witnesses
+ # should be valid. If we're after activation, then sending this with
+ # witnesses should be valid.
+ if segwit_activated:
+ self.test_node.test_witness_block(block, accepted=True)
+ else:
+ self.test_node.test_witness_block(block, accepted=True, with_witness=False)
+
+ # Update self.utxo
+ self.utxo.pop(0)
+ self.utxo.append(UTXO(spend_tx.sha256, 0, spend_tx.vout[0].nValue))
+
+ # Test the behavior of starting up a segwit-aware node after the softfork
+ # has activated. As segwit requires different block data than pre-segwit
+ # nodes would have stored, this requires special handling.
+ # To enable this test, pass --oldbinary=<path-to-pre-segwit-bitcoind> to
+ # the test.
+ def test_upgrade_after_activation(self, node, node_id):
+ print("\tTesting software upgrade after softfork activation")
+
+ assert(node_id != 0) # node0 is assumed to be a segwit-active bitcoind
+
+ # Make sure the nodes are all up
+ sync_blocks(self.nodes)
+
+ # Restart with the new binary
+ stop_node(node, node_id)
+ self.nodes[node_id] = start_node(node_id, self.options.tmpdir, ["-debug"])
+ connect_nodes(self.nodes[0], node_id)
+
+ sync_blocks(self.nodes)
+
+ # Make sure that this peer thinks segwit has activated.
+ assert(get_bip9_status(node, 'segwit')['status'] == "active")
+
+ # Make sure this peers blocks match those of node0.
+ height = node.getblockcount()
+ while height >= 0:
+ block_hash = node.getblockhash(height)
+ assert_equal(block_hash, self.nodes[0].getblockhash(height))
+ assert_equal(self.nodes[0].getblock(block_hash), node.getblock(block_hash))
+ height -= 1
+
+
+ def test_witness_sigops(self):
+ '''Ensure sigop counting is correct inside witnesses.'''
+ print("\tTesting sigops limit")
+
+ assert(len(self.utxo))
+
+ # Keep this under MAX_OPS_PER_SCRIPT (201)
+ witness_program = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKMULTISIG]*5 + [OP_CHECKSIG]*193 + [OP_ENDIF])
+ witness_hash = sha256(witness_program)
+ scriptPubKey = CScript([OP_0, witness_hash])
+
+ sigops_per_script = 20*5 + 193*1
+ # We'll produce 2 extra outputs, one with a program that would take us
+ # over max sig ops, and one with a program that would exactly reach max
+ # sig ops
+ outputs = (MAX_SIGOP_COST // sigops_per_script) + 2
+ extra_sigops_available = MAX_SIGOP_COST % sigops_per_script
+
+ # We chose the number of checkmultisigs/checksigs to make this work:
+ assert(extra_sigops_available < 100) # steer clear of MAX_OPS_PER_SCRIPT
+
+ # This script, when spent with the first
+ # N(=MAX_SIGOP_COST//sigops_per_script) outputs of our transaction,
+ # would push us just over the block sigop limit.
+ witness_program_toomany = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available + 1) + [OP_ENDIF])
+ witness_hash_toomany = sha256(witness_program_toomany)
+ scriptPubKey_toomany = CScript([OP_0, witness_hash_toomany])
+
+ # If we spend this script instead, we would exactly reach our sigop
+ # limit (for witness sigops).
+ witness_program_justright = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available) + [OP_ENDIF])
+ witness_hash_justright = sha256(witness_program_justright)
+ scriptPubKey_justright = CScript([OP_0, witness_hash_justright])
+
+ # First split our available utxo into a bunch of outputs
+ split_value = self.utxo[0].nValue // outputs
+ tx = CTransaction()
+ tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
+ for i in range(outputs):
+ tx.vout.append(CTxOut(split_value, scriptPubKey))
+ tx.vout[-2].scriptPubKey = scriptPubKey_toomany
+ tx.vout[-1].scriptPubKey = scriptPubKey_justright
+ tx.rehash()
+
+ block_1 = self.build_next_block()
+ self.update_witness_block_with_transactions(block_1, [tx])
+ self.test_node.test_witness_block(block_1, accepted=True)
+
+ tx2 = CTransaction()
+ # If we try to spend the first n-1 outputs from tx, that should be
+ # too many sigops.
+ total_value = 0
+ for i in range(outputs-1):
+ tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b""))
+ tx2.wit.vtxinwit.append(CTxinWitness())
+ tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program ]
+ total_value += tx.vout[i].nValue
+ tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_toomany ]
+ tx2.vout.append(CTxOut(total_value, CScript([OP_TRUE])))
+ tx2.rehash()
+
+ block_2 = self.build_next_block()
+ self.update_witness_block_with_transactions(block_2, [tx2])
+ self.test_node.test_witness_block(block_2, accepted=False)
+
+ # Try dropping the last input in tx2, and add an output that has
+ # too many sigops (contributing to legacy sigop count).
+ checksig_count = (extra_sigops_available // 4) + 1
+ scriptPubKey_checksigs = CScript([OP_CHECKSIG]*checksig_count)
+ tx2.vout.append(CTxOut(0, scriptPubKey_checksigs));
+ tx2.vin.pop()
+ tx2.wit.vtxinwit.pop()
+ tx2.vout[0].nValue -= tx.vout[-2].nValue
+ tx2.rehash()
+ block_3 = self.build_next_block()
+ self.update_witness_block_with_transactions(block_3, [tx2])
+ self.test_node.test_witness_block(block_3, accepted=False)
+
+ # If we drop the last checksig in this output, the tx should succeed.
+ block_4 = self.build_next_block()
+ tx2.vout[-1].scriptPubKey = CScript([OP_CHECKSIG]*(checksig_count-1))
+ tx2.rehash()
+ self.update_witness_block_with_transactions(block_4, [tx2])
+ self.test_node.test_witness_block(block_4, accepted=True)
+
+ # Reset the tip back down for the next test
+ sync_blocks(self.nodes)
+ for x in self.nodes:
+ x.invalidateblock(block_4.hash)
+
+ # Try replacing the last input of tx2 to be spending the last
+ # output of tx
+ block_5 = self.build_next_block()
+ tx2.vout.pop()
+ tx2.vin.append(CTxIn(COutPoint(tx.sha256, outputs-1), b""))
+ tx2.wit.vtxinwit.append(CTxinWitness())
+ tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_justright ]
+ tx2.rehash()
+ self.update_witness_block_with_transactions(block_5, [tx2])
+ self.test_node.test_witness_block(block_5, accepted=True)
+
+ # TODO: test p2sh sigop counting
+
+ def test_getblocktemplate_before_lockin(self):
+ print("\tTesting getblocktemplate setting of segwit versionbit (before lockin)")
+ block_version = (self.nodes[0].getblocktemplate())['version']
+ assert_equal(block_version & (1 << VB_WITNESS_BIT), 0)
+
+ # Workaround:
+ # Can either change the tip, or change the mempool and wait 5 seconds
+ # to trigger a recomputation of getblocktemplate.
+ self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
+ # Using mocktime lets us avoid sleep()
+ self.nodes[0].setmocktime(int(time.time())+10)
+
+ block_version = self.nodes[0].getblocktemplate({"rules" : ["segwit"]})['version']
+ assert(block_version & (1 << VB_WITNESS_BIT) != 0)
+ self.nodes[0].setmocktime(0) # undo mocktime
+
+ def run_test(self):
+ # Setup the p2p connections and start up the network thread.
+ self.test_node = TestNode() # sets NODE_WITNESS|NODE_NETWORK
+ self.old_node = TestNode() # only NODE_NETWORK
+ self.std_node = TestNode() # for testing node1 (fRequireStandard=true)
+
+ self.p2p_connections = [self.test_node, self.old_node]
+
+ self.connections = []
+ self.connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.test_node, services=NODE_NETWORK|NODE_WITNESS))
+ self.connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.old_node, services=NODE_NETWORK))
+ self.connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], self.std_node, services=NODE_NETWORK|NODE_WITNESS))
+ self.test_node.add_connection(self.connections[0])
+ self.old_node.add_connection(self.connections[1])
+ self.std_node.add_connection(self.connections[2])
+
+ NetworkThread().start() # Start up network handling in another thread
+
+ # Keep a place to store utxo's that can be used in later tests
+ self.utxo = []
+
+ # Test logic begins here
+ self.test_node.wait_for_verack()
+
+ print("\nStarting tests before segwit lock in:")
+
+ self.test_witness_services() # Verifies NODE_WITNESS
+ self.test_non_witness_transaction() # non-witness tx's are accepted
+ self.test_unnecessary_witness_before_segwit_activation()
+ self.test_block_relay(segwit_activated=False)
+
+ # Advance to segwit being 'started'
+ self.advance_to_segwit_started()
+ self.test_getblocktemplate_before_lockin()
+
+ sync_blocks(self.nodes)
+
+ # At lockin, nothing should change.
+ print("\nTesting behavior post lockin, pre-activation")
+ self.advance_to_segwit_lockin()
+
+ # Retest unnecessary witnesses
+ self.test_unnecessary_witness_before_segwit_activation()
+ self.test_witness_tx_relay_before_segwit_activation()
+ self.test_block_relay(segwit_activated=False)
+ self.test_p2sh_witness(segwit_activated=False)
+
+ sync_blocks(self.nodes)
+
+ # Now activate segwit
+ print("\nTesting behavior after segwit activation")
+ self.advance_to_segwit_active()
+
+ sync_blocks(self.nodes)
+
+ # Test P2SH witness handling again
+ self.test_p2sh_witness(segwit_activated=True)
+ self.test_witness_commitments()
+ self.test_block_malleability()
+ self.test_witness_block_size()
+ self.test_submit_block()
+ self.test_extra_witness_data()
+ self.test_max_witness_push_length()
+ self.test_max_witness_program_length()
+ self.test_witness_input_length()
+ self.test_block_relay(segwit_activated=True)
+ self.test_tx_relay_after_segwit_activation()
+ self.test_segwit_versions()
+ self.test_premature_coinbase_witness_spend()
+ self.test_signature_version_1()
+ sync_blocks(self.nodes)
+ if self.test_upgrade:
+ self.test_upgrade_after_activation(self.nodes[2], 2)
+ else:
+ print("\tSkipping upgrade-after-activation test (use --oldbinary to enable)")
+ self.test_witness_sigops()
+
+
+if __name__ == '__main__':
+ SegWitTest().main()
diff --git a/qa/rpc-tests/test_framework/blocktools.py b/qa/rpc-tests/test_framework/blocktools.py
index 26cc396315..df4fe13e5c 100644
--- a/qa/rpc-tests/test_framework/blocktools.py
+++ b/qa/rpc-tests/test_framework/blocktools.py
@@ -5,7 +5,7 @@
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
from .mininode import *
-from .script import CScript, OP_TRUE, OP_CHECKSIG
+from .script import CScript, OP_TRUE, OP_CHECKSIG, OP_RETURN
# Create a block (with regtest difficulty)
def create_block(hashprev, coinbase, nTime=None):
@@ -22,6 +22,29 @@ def create_block(hashprev, coinbase, nTime=None):
block.calc_sha256()
return block
+# From BIP141
+WITNESS_COMMITMENT_HEADER = b"\xaa\x21\xa9\xed"
+
+# According to BIP141, blocks with witness rules active must commit to the
+# hash of all in-block transactions including witness.
+def add_witness_commitment(block, nonce=0):
+ # First calculate the merkle root of the block's
+ # transactions, with witnesses.
+ witness_nonce = nonce
+ witness_root = block.calc_witness_merkle_root()
+ witness_commitment = uint256_from_str(hash256(ser_uint256(witness_root)+ser_uint256(witness_nonce)))
+ # witness_nonce should go to coinbase witness.
+ block.vtx[0].wit.vtxinwit = [CTxinWitness()]
+ block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ser_uint256(witness_nonce)]
+
+ # witness commitment is the last OP_RETURN output in coinbase
+ output_data = WITNESS_COMMITMENT_HEADER + ser_uint256(witness_commitment)
+ block.vtx[0].vout.append(CTxOut(0, CScript([OP_RETURN, output_data])))
+ block.vtx[0].rehash()
+ block.hashMerkleRoot = block.calc_merkle_root()
+ block.rehash()
+
+
def serialize_script_num(value):
r = bytearray(0)
if value == 0:
diff --git a/qa/rpc-tests/test_framework/mininode.py b/qa/rpc-tests/test_framework/mininode.py
index 6612b99b84..4548e2e7c0 100755
--- a/qa/rpc-tests/test_framework/mininode.py
+++ b/qa/rpc-tests/test_framework/mininode.py
@@ -28,7 +28,7 @@ import asyncore
import time
import sys
import random
-from binascii import hexlify, unhexlify
+from .util import hex_str_to_bytes, bytes_to_hex_str
from io import BytesIO
from codecs import encode
import hashlib
@@ -46,6 +46,11 @@ MAX_BLOCK_SIZE = 1000000
COIN = 100000000 # 1 btc in satoshis
+NODE_NETWORK = (1 << 0)
+NODE_GETUTXO = (1 << 1)
+NODE_BLOOM = (1 << 2)
+NODE_WITNESS = (1 << 3)
+
# Keep our own socket map for asyncore, so that we can track disconnects
# ourselves (to workaround an issue with closing an asyncore socket when
# using select)
@@ -63,6 +68,8 @@ mininode_lock = RLock()
def sha256(s):
return hashlib.new('sha256', s).digest()
+def ripemd160(s):
+ return hashlib.new('ripemd160', s).digest()
def hash256(s):
return sha256(sha256(s))
@@ -133,7 +140,10 @@ def deser_vector(f, c):
return r
-def ser_vector(l):
+# ser_function_name: Allow for an alternate serialization function on the
+# entries in the vector (we use this for serializing the vector of transactions
+# for a witness block).
+def ser_vector(l, ser_function_name=None):
r = b""
if len(l) < 253:
r = struct.pack("B", len(l))
@@ -144,7 +154,10 @@ def ser_vector(l):
else:
r = struct.pack("<BQ", 255, len(l))
for i in l:
- r += i.serialize()
+ if ser_function_name:
+ r += getattr(i, ser_function_name)()
+ else:
+ r += i.serialize()
return r
@@ -239,12 +252,12 @@ def ser_int_vector(l):
# Deserialize from a hex string representation (eg from RPC)
def FromHex(obj, hex_string):
- obj.deserialize(BytesIO(unhexlify(hex_string.encode('ascii'))))
+ obj.deserialize(BytesIO(hex_str_to_bytes(hex_string)))
return obj
# Convert a binary-serializable object to hex (eg for submission via RPC)
def ToHex(obj):
- return hexlify(obj.serialize()).decode('ascii')
+ return bytes_to_hex_str(obj.serialize())
# Objects that map to bitcoind objects, which can be serialized/deserialized
@@ -273,12 +286,16 @@ class CAddress(object):
return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices,
self.ip, self.port)
+MSG_WITNESS_FLAG = 1<<30
class CInv(object):
typemap = {
0: "Error",
1: "TX",
- 2: "Block"}
+ 2: "Block",
+ 1|MSG_WITNESS_FLAG: "WitnessTx",
+ 2|MSG_WITNESS_FLAG : "WitnessBlock"
+ }
def __init__(self, t=0, h=0):
self.type = t
@@ -362,7 +379,7 @@ class CTxIn(object):
def __repr__(self):
return "CTxIn(prevout=%s scriptSig=%s nSequence=%i)" \
- % (repr(self.prevout), hexlify(self.scriptSig),
+ % (repr(self.prevout), bytes_to_hex_str(self.scriptSig),
self.nSequence)
@@ -384,7 +401,67 @@ class CTxOut(object):
def __repr__(self):
return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \
% (self.nValue // COIN, self.nValue % COIN,
- hexlify(self.scriptPubKey))
+ bytes_to_hex_str(self.scriptPubKey))
+
+
+class CScriptWitness(object):
+ def __init__(self):
+ # stack is a vector of strings
+ self.stack = []
+
+ def __repr__(self):
+ return "CScriptWitness(%s)" % \
+ (",".join([bytes_to_hex_str(x) for x in self.stack]))
+
+ def is_null(self):
+ if self.stack:
+ return False
+ return True
+
+
+class CTxinWitness(object):
+ def __init__(self):
+ self.scriptWitness = CScriptWitness()
+
+ def deserialize(self, f):
+ self.scriptWitness.stack = deser_string_vector(f)
+
+ def serialize(self):
+ return ser_string_vector(self.scriptWitness.stack)
+
+ def __repr__(self):
+ return repr(self.scriptWitness)
+
+ def is_null(self):
+ return self.scriptWitness.is_null()
+
+
+class CTxWitness(object):
+ def __init__(self):
+ self.vtxinwit = []
+
+ def deserialize(self, f):
+ for i in range(len(self.vtxinwit)):
+ self.vtxinwit[i].deserialize(f)
+
+ def serialize(self):
+ r = b""
+ # This is different than the usual vector serialization --
+ # we omit the length of the vector, which is required to be
+ # the same length as the transaction's vin vector.
+ for x in self.vtxinwit:
+ r += x.serialize()
+ return r
+
+ def __repr__(self):
+ return "CTxWitness(%s)" % \
+ (';'.join([repr(x) for x in self.vtxinwit]))
+
+ def is_null(self):
+ for x in self.vtxinwit:
+ if not x.is_null():
+ return False
+ return True
class CTransaction(object):
@@ -393,6 +470,7 @@ class CTransaction(object):
self.nVersion = 1
self.vin = []
self.vout = []
+ self.wit = CTxWitness()
self.nLockTime = 0
self.sha256 = None
self.hash = None
@@ -401,32 +479,80 @@ class CTransaction(object):
self.vin = copy.deepcopy(tx.vin)
self.vout = copy.deepcopy(tx.vout)
self.nLockTime = tx.nLockTime
- self.sha256 = None
- self.hash = None
+ self.sha256 = tx.sha256
+ self.hash = tx.hash
+ self.wit = copy.deepcopy(tx.wit)
def deserialize(self, f):
self.nVersion = struct.unpack("<i", f.read(4))[0]
self.vin = deser_vector(f, CTxIn)
- self.vout = deser_vector(f, CTxOut)
+ flags = 0
+ if len(self.vin) == 0:
+ flags = struct.unpack("<B", f.read(1))[0]
+ # Not sure why flags can't be zero, but this
+ # matches the implementation in bitcoind
+ if (flags != 0):
+ self.vin = deser_vector(f, CTxIn)
+ self.vout = deser_vector(f, CTxOut)
+ else:
+ self.vout = deser_vector(f, CTxOut)
+ if flags != 0:
+ self.wit.vtxinwit = [CTxinWitness()]*len(self.vin)
+ self.wit.deserialize(f)
self.nLockTime = struct.unpack("<I", f.read(4))[0]
self.sha256 = None
self.hash = None
- def serialize(self):
+ def serialize_without_witness(self):
+ r = b""
+ r += struct.pack("<i", self.nVersion)
+ r += ser_vector(self.vin)
+ r += ser_vector(self.vout)
+ r += struct.pack("<I", self.nLockTime)
+ return r
+
+ # Only serialize with witness when explicitly called for
+ def serialize_with_witness(self):
+ flags = 0
+ if not self.wit.is_null():
+ flags |= 1
r = b""
r += struct.pack("<i", self.nVersion)
+ if flags:
+ dummy = []
+ r += ser_vector(dummy)
+ r += struct.pack("<B", flags)
r += ser_vector(self.vin)
r += ser_vector(self.vout)
+ if flags & 1:
+ if (len(self.wit.vtxinwit) != len(self.vin)):
+ # vtxinwit must have the same length as vin
+ self.wit.vtxinwit = self.wit.vtxinwit[:len(self.vin)]
+ for i in range(len(self.wit.vtxinwit), len(self.vin)):
+ self.wit.vtxinwit.append(CTxinWitness())
+ r += self.wit.serialize()
r += struct.pack("<I", self.nLockTime)
return r
+ # Regular serialization is without witness -- must explicitly
+ # call serialize_with_witness to include witness data.
+ def serialize(self):
+ return self.serialize_without_witness()
+
+ # Recalculate the txid (transaction hash without witness)
def rehash(self):
self.sha256 = None
self.calc_sha256()
- def calc_sha256(self):
+ # We will only cache the serialization without witness in
+ # self.sha256 and self.hash -- those are expected to be the txid.
+ def calc_sha256(self, with_witness=False):
+ if with_witness:
+ # Don't cache the result, just return it
+ return uint256_from_str(hash256(self.serialize_with_witness()))
+
if self.sha256 is None:
- self.sha256 = uint256_from_str(hash256(self.serialize()))
+ self.sha256 = uint256_from_str(hash256(self.serialize_without_witness()))
self.hash = encode(hash256(self.serialize())[::-1], 'hex_codec').decode('ascii')
def is_valid(self):
@@ -518,17 +644,17 @@ class CBlock(CBlockHeader):
super(CBlock, self).deserialize(f)
self.vtx = deser_vector(f, CTransaction)
- def serialize(self):
+ def serialize(self, with_witness=False):
r = b""
r += super(CBlock, self).serialize()
- r += ser_vector(self.vtx)
+ if with_witness:
+ r += ser_vector(self.vtx, "serialize_with_witness")
+ else:
+ r += ser_vector(self.vtx)
return r
- def calc_merkle_root(self):
- hashes = []
- for tx in self.vtx:
- tx.calc_sha256()
- hashes.append(ser_uint256(tx.sha256))
+ # Calculate the merkle root given a vector of transaction hashes
+ def get_merkle_root(self, hashes):
while len(hashes) > 1:
newhashes = []
for i in range(0, len(hashes), 2):
@@ -537,6 +663,24 @@ class CBlock(CBlockHeader):
hashes = newhashes
return uint256_from_str(hashes[0])
+ def calc_merkle_root(self):
+ hashes = []
+ for tx in self.vtx:
+ tx.calc_sha256()
+ hashes.append(ser_uint256(tx.sha256))
+ return self.get_merkle_root(hashes)
+
+ def calc_witness_merkle_root(self):
+ # For witness root purposes, the hash of the
+ # coinbase, with witness, is defined to be 0...0
+ hashes = [ser_uint256(0)]
+
+ for tx in self.vtx[1:]:
+ # Calculate the hashes with witness data
+ hashes.append(ser_uint256(tx.calc_sha256(True)))
+
+ return self.get_merkle_root(hashes)
+
def is_valid(self):
self.calc_sha256()
target = uint256_from_compact(self.nBits)
@@ -812,11 +956,16 @@ class msg_tx(object):
self.tx.deserialize(f)
def serialize(self):
- return self.tx.serialize()
+ return self.tx.serialize_without_witness()
def __repr__(self):
return "msg_tx(tx=%s)" % (repr(self.tx))
+class msg_witness_tx(msg_tx):
+
+ def serialize(self):
+ return self.tx.serialize_with_witness()
+
class msg_block(object):
command = b"block"
@@ -849,6 +998,12 @@ class msg_generic(object):
def __repr__(self):
return "msg_generic()"
+class msg_witness_block(msg_block):
+
+ def serialize(self):
+ r = self.block.serialize(with_witness=True)
+ return r
+
class msg_getaddr(object):
command = b"getaddr"
@@ -947,6 +1102,7 @@ class msg_sendheaders(object):
def __repr__(self):
return "msg_sendheaders()"
+
# getheaders message has
# number of entries
# vector of hashes
@@ -1068,6 +1224,8 @@ class NodeConnCB(object):
# tests; it causes message delivery to sleep for the specified time
# before acquiring the global lock and delivering the next message.
self.deliver_sleep_time = None
+ # Remember the services our peer has advertised
+ self.peer_services = None
def set_deliver_sleep_time(self, value):
with mininode_lock:
@@ -1105,6 +1263,7 @@ class NodeConnCB(object):
conn.ver_send = min(MY_VERSION, message.nVersion)
if message.nVersion < 209:
conn.ver_recv = conn.ver_send
+ conn.nServices = message.nServices
def on_verack(self, conn, message):
conn.ver_recv = conn.ver_send
@@ -1135,6 +1294,7 @@ class NodeConnCB(object):
def on_mempool(self, conn): pass
def on_pong(self, conn, message): pass
def on_feefilter(self, conn, message): pass
+ def on_sendheaders(self, conn, message): pass
# More useful callbacks and functions for NodeConnCB's which have a single NodeConn
class SingleNodeConnCB(NodeConnCB):
@@ -1183,15 +1343,16 @@ class NodeConn(asyncore.dispatcher):
b"getheaders": msg_getheaders,
b"reject": msg_reject,
b"mempool": msg_mempool,
- b"feefilter": msg_feefilter
+ b"feefilter": msg_feefilter,
+ b"sendheaders": msg_sendheaders
}
MAGIC_BYTES = {
"mainnet": b"\xf9\xbe\xb4\xd9", # mainnet
"testnet3": b"\x0b\x11\x09\x07", # testnet3
- "regtest": b"\xfa\xbf\xb5\xda" # regtest
+ "regtest": b"\xfa\xbf\xb5\xda", # regtest
}
- def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", services=1):
+ def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", services=NODE_NETWORK):
asyncore.dispatcher.__init__(self, map=mininode_socket_map)
self.log = logging.getLogger("NodeConn(%s:%d)" % (dstaddr, dstport))
self.dstaddr = dstaddr
@@ -1206,6 +1367,7 @@ class NodeConn(asyncore.dispatcher):
self.network = net
self.cb = callback
self.disconnect = False
+ self.nServices = 0
# stuff version msg into sendbuf
vt = msg_version()
diff --git a/qa/rpc-tests/test_framework/script.py b/qa/rpc-tests/test_framework/script.py
index 44a894fc8f..7678228c42 100644
--- a/qa/rpc-tests/test_framework/script.py
+++ b/qa/rpc-tests/test_framework/script.py
@@ -15,8 +15,9 @@ Functionality to build scripts, as well as SignatureHash().
"""
-from .mininode import CTransaction, CTxOut, hash256
+from .mininode import CTransaction, CTxOut, sha256, hash256, uint256_from_str, ser_uint256, ser_string
from binascii import hexlify
+import hashlib
import sys
bchr = chr
@@ -36,6 +37,10 @@ MAX_SCRIPT_OPCODES = 201
OPCODE_NAMES = {}
+def hash160(s):
+ return hashlib.new('ripemd160', sha256(s)).digest()
+
+
_opcode_instances = []
class CScriptOp(int):
"""A single script opcode"""
@@ -895,3 +900,48 @@ def SignatureHash(script, txTo, inIdx, hashtype):
hash = hash256(s)
return (hash, None)
+
+# TODO: Allow cached hashPrevouts/hashSequence/hashOutputs to be provided.
+# Performance optimization probably not necessary for python tests, however.
+# Note that this corresponds to sigversion == 1 in EvalScript, which is used
+# for version 0 witnesses.
+def SegwitVersion1SignatureHash(script, txTo, inIdx, hashtype, amount):
+
+ hashPrevouts = 0
+ hashSequence = 0
+ hashOutputs = 0
+
+ if not (hashtype & SIGHASH_ANYONECANPAY):
+ serialize_prevouts = bytes()
+ for i in txTo.vin:
+ serialize_prevouts += i.prevout.serialize()
+ hashPrevouts = uint256_from_str(hash256(serialize_prevouts))
+
+ if (not (hashtype & SIGHASH_ANYONECANPAY) and (hashtype & 0x1f) != SIGHASH_SINGLE and (hashtype & 0x1f) != SIGHASH_NONE):
+ serialize_sequence = bytes()
+ for i in txTo.vin:
+ serialize_sequence += struct.pack("<I", i.nSequence)
+ hashSequence = uint256_from_str(hash256(serialize_sequence))
+
+ if ((hashtype & 0x1f) != SIGHASH_SINGLE and (hashtype & 0x1f) != SIGHASH_NONE):
+ serialize_outputs = bytes()
+ for o in txTo.vout:
+ serialize_outputs += o.serialize()
+ hashOutputs = uint256_from_str(hash256(serialize_outputs))
+ elif ((hashtype & 0x1f) == SIGHASH_SINGLE and inIdx < len(txTo.vout)):
+ serialize_outputs = txTo.vout[inIdx].serialize()
+ hashOutputs = uint256_from_str(hash256(serialize_outputs))
+
+ ss = bytes()
+ ss += struct.pack("<i", txTo.nVersion)
+ ss += ser_uint256(hashPrevouts)
+ ss += ser_uint256(hashSequence)
+ ss += txTo.vin[inIdx].prevout.serialize()
+ ss += ser_string(script)
+ ss += struct.pack("<q", amount)
+ ss += struct.pack("<I", txTo.vin[inIdx].nSequence)
+ ss += ser_uint256(hashOutputs)
+ ss += struct.pack("<i", txTo.nLockTime)
+ ss += struct.pack("<I", hashtype)
+
+ return hash256(ss)